Seeking An Effective Dispersion Relation in Solutions to the Nls and Measuring Effective Nonlinearity

The linear part of the Nonlinear Schrödinger Equation (NLS) \(iq_t = q_{xx} \) has dispersion relation \(\omega = k^2 \). We don't expect solutions to the fully nonlinear equation to behave nicely or have any kind of effective dispersion relation like this. However, I have seen that solutions to the NLS are actually weakly coupled and are often nearly sinusoidal in time with a dominant frequency, often behaving similarly to modulated plane waves. In fact, these highly nonlinear solutions eventually end up behaving more and more linearly.

Speaker: Katelyn Leisman
(University of Illinois at Urbana Champaign)
Thursday, March 1, 2018
Time: 4:00 – 5:00 PM
Location: Lally 02