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INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

1. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE
COLLATED AND GRADED BY THE ID NUMBER ABOVE.

2. Use at least one separate preprinted answer sheet for each problem. Write on only one
side of each answer sheet.

3. Write your identification number listed above, in the appropriate box on each preprinted
answer sheet.

4. Write the problem number in the appropriate box of each preprinted answer sheet. If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 of 3).

5. Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all problems that you are handing in.

6. A passing distribution for the individual components will normally include at least three
passed problems (from problems 1-5) for Mechanics and three problems (from problems
6-10) for Electricity and Magnetism.

7. YOU MUST SHOW ALL YOUR WORK.
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-1 [10]
A ball of mass m is thrown with initial speed v from the edge of a cliff of height h.

(a) At what inclination angle 8,,,, should the ball be thrown so that it travels the maximum
horizontal distance dmax?
(b) What is the maximum horizontal distance dmax?

Assume that the ground below the cliff is horizontal.

12 [10]

A thin disk of mass M and radius A is connected by two springs of spring constant k to two fixed
points on a frictionless table top. The disk is free to rotate but its center is constrained to move in
one dimension within the plane. Each spring has an unstretched length of [, and initially both
are stretched to a length [ > [, in the equilibrium position, as shown in the figure below. What
are the frequencies of the normal modes of oscillation for small vibrations? Indicate the nature of
motion for each mode.

k k




13 [10]

A nonuniform wire of total length L and total mass M has a variable linear mass density given
by u(x)=kx, where x is the distance measured from one end of the wire and k is a constant.

The tension in the wire is F .
(a) Determine k intermsof M and L.

(b) How long does it take for a transverse pulse generated at one end of the wire to travel to the
other end? You must express your answer intermsof M, L,and F.

14 [10]

Consider a system consisting of two thin long rods of equal uniform masses m, equal lengths |
and equal radii R. The two rods are connected by a (massless) hinge in point A. Rod OA rotates
around O. The rotation is in the x-y-plane. The end B of rod AB slides without friction along the
x-axis as illustrated in the figure below.

Obtain the total kinetic energy of the system as a function of ¢, ¢, and the parameters given
above.




15 [10]

The relativistic Doppler effect is the change in frequency f of light, caused by relative motion of
the source and the observer. Assume that the source and the observer are moving away from

each other with a relative velocity v.

wavefronts

Light-source observer
(frequency: f,)

Consider the problem in the reference frame of the source. Let fs be the frequency of the wave
the source emitted. Suppose one wavefront arrives at the observer.

(a) What is the distance of the next wavefront away from him?
(b) What is the time t between crest (of the wavefront) arrivals at the observer?

(c) Due to relativistic effect, what will the observer measure this time t, to be?

(d) What is the corresponding observed frequency f,?



-6 [10]

Two infinitely long grounded metal plates at y=0 and y=a are connected at x=xb by metal strips
maintained at a constant electrical potential V, as shown in the figure. A thin layer of insulation
at each corner prevents the plates from shorting out.

Calculate the potential ¢ (x, y, z) inside the pipe.

y

-7 [10]

() Write down Maxwell’s equations for free space where there are no current or charge
distributions.

(b) Derive wave equations for electric and magnetic fields from Maxwell’s equations.

(c) Assume plane-wave solution for the fields and show that E, B and k are perpendicular to each
other.

—

E E(;COS(EOF—a)t)
B B, cos(R or— a)t)
c=aw/k

(d) Use the two curl equations in Maxwell’s equations to show the relationship between &, 4,
and speed-of-light in free space, c.



18 [10]

A long, solid dielectric cylinder of radius a is permanently polarized so that the polarization is
everywhere radially outward, with a magnitude proportional to the distance from the axis of the
cylinder, i.e., P = %Porf.
(a) Find the charge density in the cylinder.
(b) If the cylinder is rotated with a constant angular velocity w about its axis without
change in P, what is the magnetic field on the axis of the cylinder at point not too
near its ends?



19 [10]

A system of two tiny metal spheres separated by a distance s and connected by a fine wire is
shown in Figure (a) below. At time t the charge on the upper sphere is q(t), and the charge on the
lower sphere is —q(t). Suppose further that we can drive the charge back and forth through the
wire, from one end to other, at a frequency w: q(t) = q,cos(wt)

(@) Write down the corresponding, oscillating electric dipole: p(t), in terms of the charge qo
and the separating distance s.

(b) In the far field approximation r > s, calculate the vector-potential of this dipole system
and express the vector-potential in terms of p(t).

(c) An electric dipole, p, oscillates with a frequency o and amplitude p,. It is placed at a
distant +a/2 from an infinite perfectly conducting plane and the dipole is parallel to the
plane as shown in Figure (b) below. Find the electric and magnetic field for distance
r> a.

( Note: for approximation: r; ~r-a/2 sin@cos ¢; r, ~r+al2 sindcos ¢; 1/r; ~1/r,~1/r.)

mirror
(a) 4 (b)
q(t) r
]
5{ » X i
'3 P a2
-q(t) Imaging
dipole
oscillating conducting
charge plane




1-10  [10]

Consider an infinitely long, uniform line charge with line charge density A (measured in
Coulomb/meter). The line charge is placed on the z-axis of reference frame S (x, y, z) and is
traveling with relativistic speed v= 0.9 c in the +z direction. Here, c is the speed of light.
(a) Calculate the electric field E and the magnetic field B of the line charge in frame S (x, v,
2).
(b) Consider the reference frame S’ (x’, y’, z’). The axes x’, y” and z’ of S’ are parallel to the
axis x, y, z of S. The frame S” moves relative to the frame S with a speed v=0.9c in the +z
direction. Calculate the electric field E’ and magnetic field B’ in frame S’(x’, y’, 2°).

(c) The line charge density A (measured in S) is not equal to the line charge density A’

(measured in S’). Calculate A’.



Solution I-1

. Throwing a ball from a cliff

Let the inclination angle be 6. Then the horizontal speed is v, = v cos @, and the initial
vertical speed is v, = v sin @. The time it takes for the ball to hit the ground is given
by h + (vsin8)t — gt /2 = 0. Therefore,

t=§(sin6+\/sin29+ﬁ), where ﬁsi“i—h. (3.119)
v

(The “—~" solution for ¢ from the quadratic formula corresponds to the ball being thrown
backward down through the cliff.) The horizontal distance traveled is d = (vcos8)t,

which gives
5 |
d= v? cosé (sine + /sin’0 + ﬁ) : (3.120)

We want 1o maximize this function of 6. Taking the derivative, multiplying through
by /sin?8 + B, and setting the result equal to zero, gives

(cos?@ — sin?9)y/sin%0 + B = sin (B — (cos?0 — sin%0)). (3.121)

Using cos?6 = 1 — sin®8, and then squaring and simplifying this equation, gives an
optimal angle of

1
! — (3.122)

V2+58 = V2 +2ghjvE

Plugging this into Eq. (3.120), and simplifying, gives a maximum distance of

2 2 2oh
dus = —/THB= = 14+ 22, (3.123)
g gV v

Sin Bmgx =

Ifh = 0, then Omax = 7/4 and digx = v?/g, in agreement with the example in Section
3.4.1f h > oo or v — 0, then fyay = 0, which makes sense.



I-2 Solution:

The motion of the disk is confined to the vertical plane. Let the displacement of the center of mass from
equilibrium be x and the angular displacement be 8, as shown in the Fig.

To first order in 8, the restoring forces are
FE=k(l+x—=1), FRR=k(l-x-1)
The equations of motion are then
Mi=F,—-F =-2kx
i+Zx=0 (1)
and 18 = (F, — Fy)Asing,
where [ = iMAz and ¢ is given by

sin(rr — ¢) B sin(@)
l+A+x  l+x

or

I+ A 1+ A4
] sinf '-s——-l—B

sin(¢) =

o ak(i-lo)(1+4) 5
e+ TB =0 (2)

The angular frequencies of oscillation are given from eqn (1): w, = ./2k/M (associated with the left
right motion of the disk, no rotation}

and eqn (2): w, = J4k({l — 1)(l + A)/MIA. (associated with the rotation of the disk, fixed position).
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-8 Solution:

(a) Using cylindrical coordinates(r, 8,2), we have P = P. = f;—r-. The bound charge density is

”:V"’*‘:a( z)

{b) As w = w2, the volume current density at a point r = r# + 22 in the cylinder is,
j(r) = pv = pw X r = —Pywi X (rf + 22) = —Pywrb.

On the surface of the cylinder there is also a surface charge distribution of density,

Por

Faa . . Py =
o=n-P=Ff |y = —‘;—, producing a surface current density of @« = ov = ?"wazﬂ.

To find the magnetic field at a point on the axis of the cylinder not too near its ends, as the cylinder is
very long we can take this point as the origin and regard the cylinder as infinitely long. Then the
magnetic induction at the origin is given by

(f j(r')xr V'+] a(rr)xrds)

J(T') X T an /2 R .
f =Pyw f de f rdrj cospdf z = 2nPywa®s
-n/2

,» where f = atan(z/r).

—dS' = -5 32 = —2nPywa’2.
’ (a2 +22)z

f a(r’)xr' P, f dedz
k) s

Hence, the magnetic induction B vanishes at points of the cylindrical axis not too near the ends.
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Solution I-10

The moving line charge constitutes a current / = Av along the z axis, so our
problem is to find the combined fields of a line charge and a line current. Let us
rccognize first that this can be done by clementary methods, without leaving the
frame 8: Using Gauss's law we can show that the E field of the line charge is
E = 2k /p radially outward from the z axis. (Here k = 1/4n ¢, is the Coulomb
force constant and p is the perpendicular distance from the z axis, that is, the
first of the coordinates p, ¢, z of cylindrical polar coordinates.) Similarly, using
Ampere’s law, we can show the B field of the current is B = (po/2m)1 /pinthe
direction given by the right-hand rule, where u,, is the so-called permeability of
space. We can express these two well-known results compactly using the unit
vectors of cylindrical polar coordinates:

to 1 2
E=—2p and B==—"—¢. (15.147)
2 p

Both of these fields are sketched in Figure 15.16(a).

While the derivation using Gauss’s and Ampere’s laws is perfectly straight-
forward, it is instructive to rederive the same results by transforming to a frame
&' traveling with the charges. In §', there is no current, so the only field is the
radial electric field, £’ = 2k)’/p’, as shown in Figure 15.16(b). This field is in
the direction of the unit vector 3 = (x'/p’, y'/p’, 0), so can be wrilten as

! I
E = Z_ﬁip - 2:_:();', ¥, 0). (15.148)

Before we transform this back to the original frame §, we must recognize that the
charge densities A and A’ are not equal: The total charge contained in any given
segment of the z axis must be the same in either frame (invariance of charge), so
that A Az = A’AZ’, but, because of length contraction, Az = Az'/y. Therefore

A= yAl, (15.149)

{8) Frame § (b) Frame &'

Figure 15.16 The fields produced by a line charge on the z axis. (&) In frame 8,
the line charge is moving up, out of the page. This constitutes a current, which
produces a B field looping around the z axis — in addition to the E ficld, which
is radially out from the z axis, (b) The frame &’ is the rest frame of the charges,
so there is no current and hence no B field — just the radial E field.
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problems 7-10) for Thermodynamics and Statistical Mechanics.

7. YOU MUST SHOW ALL YOUR WORK.
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-1 [10]

Consider a particle in a one-dimensional
potential well of width L with infinitely
high walls, such that: o0 0

V(x)=0, if O<x<L;
V(x)=o0, otherwise

V/(Xat :0) —\
At t=0, the wavefunction is:
w(x,0)=+2/L for 0<x<L/2; X
w(x,0)=0, otherwise. x=0 x=L/2 x=L

(a) What are the eigenfunctions ¢, (x) of the particle?
(b) At time t>0, what is the probability of finding the particle in state ¢, (x) ?

(c) Argue, from symmetry, that certain set of eigenstates has zero probability at all time.

-2 [10]

A charged particle is bound in a harmonic oscillator potential V = %kxz. The system is placed in

an external electric field E that is constant in space and time. Calculate the shift of the energy of
the ground state to order E2.



-3 [10]

A spin % particle is in the state
P 1 (1+i
a)=—= )
Jel 2

(@) What is the probability of getting + 72/ 2 if we measure S,.?

written in the S, -representation.

(b) What is expectation value of measuring S,-in this state?

-4 [10]

with constants # >0 and S >0. The

The Yukawa potential has the form V(r)= ﬂ—exp(r—yr)

potential describes the binding forces in an atomic nucleus.

Using the Born approximation, calculate the amplitude &) of a wave scattered from V(r) and the
total scattering cross section o. Consider scattering in the forward direction only.

11-5  [10]
Assuming scattering energies are low enough to be dominated by the s partial wave, determine
the scattering cross section for a particle by a potential given by:

V=-V, for(r<a)
V=0 for (r > a).



-6 [10]

A hydrogen atom in its ground state is placed between the parallel plates of a capacitor. At time
t< 0, the electric potential difference between the capacitor plates is zero. Starting at time t = 0,
the electric potential of the capacitor plates changes. Hence, a spatially uniform but time-
dependent electric field is established between the capacitor plates. The electric field is described

by E(t) = Eoexp(-t /7) with 7= constant.

(@) Calculate the probability that the electron is excited to the 2s energy state as a result of
the perturbation.
(b)  Calculate the probability that the electron is excited to the 2p energy state as a result of

the perturbation.

Hint:
Normalized hydrogen eigenfunctions Energy, Ry
Yioo0=m" 1/2a0—3/2e—r/ao 1
y
‘!’2.0.0 — (gn)—uza‘;s;z(l o e—rIZao _i
2a,

Vi 1.0=032n)" I/Zao— 5/2 55~ r/2a0

V21,1 = (64n)_“2a0' S12(x 4 jy)e ~T/2a0

f
e N e




-7 [10]

The equation of state of a simple ferromagnetic material is given by the implicit expression
Jm+B
m = tanh ,

where m=m(T,B) is the dimensionless magnetization (order parameter), B is the external

magnetic field, T is the temperature, k is the Boltzmann constant, and J is a material-specific
constant.

(a) What is the critical temperature T, below which the system exhibits spontaneous

magnetization? (We refer to spontaneous magnetization when m=0 at B=0.)
(b) Show that in the region just belowT,, the spontaneous magnetization behaves as

m(T,0) =~ const. | T -T, |”,
and determine the value of the critical exponent b .

-8 [10]

Initially, an ideal gas is confined to a volume V;. The initial temperature of the ideal gas is T;.
Subsequently, the ideal gas is adiabatically expanded to a volume V: Calculate the final
temperature T; of the ideal gas.



-9 [10]

Consider an ensemble of N distinguishable classical one—dimensional harmonic oscillators with
identical frequency @ and mass m at temperature T.

(a) What is the entropy S(T, N) of the system?

Hint: Start with the proper classical single-particle partition function:

7 =J-dpdq e AH(P)
h ’

where H (p,q) is the classical single-particle Hamiltonian and h is Planck’s constant.

11-10 [10]

The rotational energy levels of a diatomic molecule are described by:

g =2h—ll(l +1) with quantum number 1=0, 1, 2, ... and moment of inertia I. The degeneracy

factor of the energy levels is gi=2I+1.
(a) Calculate the partition function for the diatomic molecule.
(b) Calculate the average energy of the diatomic molecule.
(c) Calculate internal energy and the specific heat capacity at constant volume of an
ensemble of N diatomic molecules for very high temperatures T.
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-2 Solution:

Take the direction of the electric field as the x-direction. The Hamiltonian of the system is
2 2
H=—3=25+2kx? — qEx = Hy + H,
Where H' = —gEx is to be treated as a perturbation.

1
a — 22
e 2% ", where

The wave function of the ground state of a harmonic oscillator is (x) = v

mw k
As 1 is an even function, the first order correction vanishes, and we have to go to the second order,
(WhxIn) = = (728,11 + O + 1)/26,041), and hence
Hpn = —qE{0|x|n) = —qE/(v2a)6,, and
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11-4 [10]
. _ pexXp(=pr) .
The Yukawa potential has the form V(r) = #——=—-"- with constants p >0 and p >0.
r

The potential describes the binding forces in an atomic nucleus.
Using the Born approximation, calculate the amplitude f{6) of a wave scattered from ¥ (r)
and the total scattering cross section o. Consider scattering in the forward direction only.
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II-5

Solution:

The radial Schrodinger equation can be written in the form

l
w+ (R - =0 ¢>a,

a+1
x{’+(k’2— (:; ))x,(r)=0 (r <a),

Where y = rR(r),

2mE , 2m(E +V)
k== K=—7p—

Considering the s partial wave (I = 0), these become,

X' +knr)=0 (>a),

XK =0 (r<a),
With solutions

xi=Asin(k’'r), (r <a)

Xy =sin(kr 4+ &), (r > a).
The continuity condition (Iny;)’|r=q- = {ny;) [;=q+ gives,

ktan(k’'a) = k' tan(ka + &),

k
- 8, = atan (—-—tan(k'a)) —ka

k.l'
For low energies, k = 0,k' = ko = |25V
3 , 0 2
and 5ybecomes,
tﬂn(kga)
by = ka{(——————1
0 a( koa )
The total scattering cross section is then
4n 41 tan(kya) z
~ ; ~ z 0
Ifkpa « 1,
2
koa (koa)
= 4na? | — _ — 610e2172 4
o= 4na (koa+ 3kea 1 léma®m-Vy /9h
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!-’ Solution Ii- & 7

£

For time-dependent perturbations a general wave function is

Tt ) =T @y P
v

)
Where the % satisfy p
For the time-dependent perturbation W{f),
W)« -eJE)ze o

From Schroedinger's equation we can derive an equation for the time development of the

amplitudes aj(f):
b3 [h V)]

. d — .. CE (g - Ul )
Lh 9= ) o (jI0)E> 2
£ 5)
If the system is initially in the ground state, we have a;5(0) = 1 and then other values of
a,(0) are zero. For small perturbations it is sufficient to solve the equation forj = 18:
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The general probability P; that a transition is made to state j is given by
' prs T, [
. RlElz) <il2lls>
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This probability is dimensionless. It should be less than unity for t this theory to be valid.

a} For the state j = 25 the probability is zero. It vanishes because the matrix element of z
is zero: <251z|18> = 0 because of parity. Both S-states have even parity, and z has odd

parity.

b) For the state j = 2P the transition is allowed to the L = 1, M = 0 orbital state, which is
called 2P.. The matrix element is similar to the problem of the Stark effect. The 2P
eigenstate for L =1, § =0 is in Eqn. 5 and that for the 18 state is

- ¥,
¢

Ywad

The integral is

w 7
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Where g, is the Bohr radius of the hydrogen atom.
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