
 

 

Physics PhD Qualifying Examination  
Part I – Wednesday, January 21, 2015 

 
Name:_________________________________________________ 
                                (please print) 
Identification Number:________ 
 
STUDENT: Designate the problem numbers that you are handing in for grading in the 
appropriate left hand boxes below.  Initial the right hand box. 
PROCTOR: Check off the right hand boxes corresponding to the problems received from 
each student.  Initial in the right hand box. 

 1  
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 4  
 5  
 6  
 7  
 8  
 9  
 10  

 
INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS 

1. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET.  EXAMS WILL BE 
COLLATED AND GRADED BY THE ID NUMBER ABOVE. 

2. Use at least one separate preprinted answer sheet for each problem. Write on only one 
side of each answer sheet. 

3. Write your identification number listed above, in the appropriate box on each preprinted 
answer sheet.    

4. Write the problem number in the appropriate box of each preprinted answer sheet.  If 
you use more than one page for an answer, then number the answer sheets with both 
problem number and page (e.g. Problem 9 – Page 1 of 3). 

5. Staple together all the pages pertaining to a given problem.  Use a paper clip to group 
together all problems that you are handing in. 

6. A passing distribution for the individual components will normally include at least three 
passed problems (from problems 1-5) for Mechanics and three problems (from problems 
6-10) for Electricity and Magnetism. 

7. YOU MUST SHOW ALL YOUR WORK. 
 
 
 

 

Student’s initials 
 
 
# problems handed in: 
 
 
Proctor’s initials 
 
 

korniss
Text Box
(problems & solutions)
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I-1 [10] 
 
A ball of mass m is thrown with initial speed v from the edge of a cliff of height h. 
 

(a) At what inclination angle ߠ௠௔௫  should the ball be thrown so that it travels the maximum 
horizontal distance dmax? 

(b) What is the maximum horizontal distance dmax? 
 
Assume that the ground below the cliff is horizontal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
I-2 [10]  
 
A thin disk of mass M and radius A is connected by two springs of spring constant ݇ to two fixed 
points on a frictionless table top. The disk is free to rotate but its center is constrained to move in 
one dimension within the plane. Each spring has an unstretched length of ݈଴, and initially both 
are stretched to a length ݈ ൐ ݈଴ in the equilibrium position, as shown in the figure below. What 
are the frequencies of the normal modes of oscillation for small vibrations? Indicate the nature of 
motion for each mode. 
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I-3 [10] 
 
A nonuniform wire of total length L  and total mass M  has a variable linear mass density given 
by kxx )( , where x  is the distance measured from one end of the wire and k  is a constant. 
The tension in the wire is F . 
 
(a) Determine k  in terms of M  and L . 
 
(b) How long does it take for a transverse pulse generated at one end of the wire to travel to the 
other end? You must express your answer in terms of M , L , and F . 
 
 
 
 
 
 
 
 
 
 
 
I-4       [10] 
 
Consider a system consisting of two thin long rods of equal uniform masses m, equal lengths l 
and equal radii R. The two rods are connected by a (massless) hinge in point A. Rod OA rotates 
around O. The rotation is in the x-y-plane. The end B of rod AB slides without friction along the 
x-axis as illustrated in the figure below.  
 
Obtain the total kinetic energy of the system as a function of ߮, ሶ߮ , and the parameters given 
above. 
 

 

 
  



 

 4

I-5       [10] 
 
The relativistic Doppler effect is the change in frequency f of light, caused by relative motion of 
the source and the observer. Assume that the source and the observer are moving away from 
each other with a relative velocity v.  
 
 
 
 
 
 
 
 
 
 
 
Consider the problem in the reference frame of the source. Let fs be the frequency of the wave 
the source emitted. Suppose one wavefront arrives at the observer.  
 

(a) What is the distance of the next wavefront away from him?  

 
(b) What is the time t between crest (of the wavefront) arrivals at the observer?  

 
(c) Due to relativistic effect, what will the observer measure this time t0 to be? 

 
(d) What is the corresponding observed frequency f0? 

 
 
 
 
 
  

observerLight-source
(frequency: fs)

wavefronts

observerobserverLight-source
(frequency: fs)

wavefronts
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I-6 [10] 
 
Two infinitely long grounded metal plates at y=0 and y=a are connected at x=±b by metal strips 
maintained at a constant electrical potential ௢ܸ as shown in the figure. A thin layer of insulation 
at each corner prevents the plates from shorting out.  
 
Calculate the potential ߶ሺݔ, ,ݕ  .ሻ inside the pipeݖ
 

 
 
 
 
I-7 [10] 
 
(a) Write down Maxwell’s equations for free space where there are no current or charge 
distributions. 
 
(b) Derive wave equations for electric and magnetic fields from Maxwell’s equations. 
 
(c) Assume plane-wave solution for the fields and show that E, B and k are perpendicular to each 
other. 
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(d) Use the two curl equations in Maxwell’s equations to show the relationship between 00,  

and speed-of-light in free space, c.  
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I-8 [10]  
 
A long, solid dielectric cylinder of radius ܽ is permanently polarized so that the polarization is 
everywhere radially outward, with a magnitude proportional to the distance from the axis of the 

cylinder, i.e., ࡼ ൌ ଵ

ଶ ଴ܲݎ̂ݎ. 

(a) Find the charge density in the cylinder. 
(b) If the cylinder is rotated with a constant angular velocity ߱ about its axis without 

change in ࡼ, what is the magnetic field on the axis of the cylinder at point not too 
near its ends? 
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I-9 [10] 
 
A system of two tiny metal spheres separated by a distance s and connected by a fine wire is 
shown in Figure (a) below. At time t the charge on the upper sphere is q(t), and the charge on the 
lower sphere is –q(t). Suppose further that we can drive the charge back and forth through the 
wire, from one end to other, at a frequency :  ݍሺݐሻ ൌ  ሻݐሺ߱	௢cosݍ
  
(a) Write down the corresponding, oscillating electric dipole: p(t), in terms of the charge qo 

and the separating distance s.  
 

(b) In the far field approximation  ݎ ≫  calculate the vector-potential of this dipole system  ,ݏ
and express the vector-potential in terms of p(t). 
 

(c) An electric dipole, p, oscillates with a frequency  and amplitude po. It is placed at a 
distant +a/2 from an infinite perfectly conducting plane and the dipole is parallel to the 
plane as shown in Figure (b) below. Find the electric and magnetic field for distance 
ݎ ≫ ܽ. 

  
( Note: for approximation: r1  r-a/2 sin cos ; r2  r+a/2 sin cos ; 1/r1  1/r21/r.)  
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I-10 [10] 
 
Consider an infinitely long, uniform line charge with line charge density  (measured in 

Coulomb/meter). The line charge is placed on the z-axis of reference frame S (x, y, z) and is 

traveling with relativistic speed  v= 0.9 c in the +z direction. Here, c is the speed of light. 

(a) Calculate the electric field E and the magnetic field B of the line charge in frame S (x, y, 

z). 

(b) Consider the reference frame S’ (x’, y’, z’). The axes x’, y’ and z’ of S’ are parallel to the 

axis x, y, z of S. The frame S’ moves relative to the frame S with a speed v=0.9c in the +z 

direction. Calculate the electric field E’ and magnetic field B’ in frame S’(x’, y’, z’). 

(c) The line charge density  (measured in S) is not equal to the line charge density ’ 

(measured in S’). Calculate ’. 

 





























Physics PhD Qualifying Examination  
Part II – Friday, January 23, 2015 

 
Name:_________________________________________________ 
                                (please print) 
Identification Number:________ 
 
STUDENT: insert a check mark in the left boxes to designate the problem numbers that 
you are handing in for grading. 
PROCTOR: check off the right hand boxes corresponding to the problems received from 
each student.  Initial in the right hand box. 

 1  
 2  
 3  
 4  
 5  
 6  
 7  
 8  
 9  
 10  

 
INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS 

1. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE 
COLLATED AND GRADED BY THE ID NUMBER ABOVE. 

2. Use at least one separate preprinted answer sheet for each problem. Write on only one 
side of each answer sheet. 

3. Write your identification number listed above, in the appropriate box on the preprinted 
sheets.    

4. Write the problem number in the appropriate box of each preprinted answer sheet.  If 
you use more than one page for an answer, then number the answer sheets with both 
problem number and page (e.g. Problem 9 – Page 1 of 3). 

5. Staple together all the pages pertaining to a given problem.  Use a paper clip to group 
together all problems that you are handing in. 

6. A passing distribution for the individual components will normally include at least four 
passed problems (from problems 1-6) for Quantum Physics and two problems (from 
problems 7-10) for Thermodynamics and Statistical Mechanics. 

7. YOU MUST SHOW ALL YOUR WORK. 
 
 
 
  

Student’s initials 
 
 
# problems handed in: 
 
 
Proctor’s initials 
 
 

korniss
Text Box
(problems & solutions)
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II-1 [10]  
 
Consider a particle in a one-dimensional  
potential well of width L with infinitely  
high walls, such that:  
 
V(x)=0,      if 0<x<L; 
V(x)=∞,    otherwise 
 
 
At t=0, the wavefunction is: 
  Lx /20,      for 0<x<L/2; 

  00, x ,           otherwise.  
 
 
(a) What are the eigenfunctions )(xn of the particle? 

 
(b) At time t>0, what is the probability of finding the particle in state )(xn ? 

 
(c) Argue, from symmetry, that certain set of eigenstates has zero probability at all time.   
 
 
 
 
 
 
 
 
 
II-2 [10]  
 

A charged particle is bound in a harmonic oscillator potential ܸ ൌ ଵ

ଶ
 ଶ. The system is placed inݔ݇

an external electric field ܧ that is constant in space and time. Calculate the shift of the energy of 
the ground state to order ܧଶ. 
  

x
x=0 x=Lx=L/2



 0, tx

 xV

x
x=0 x=Lx=L/2



 0, tx

 xV
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II-3 [10]  
 
A spin ½  particle is in the state 
 








 


2

1

6

1
|

i
   , 

written in the ܵ௭ -representation.  
 
(a) What is the probability of getting 2/  if we measure ܵ௫?  
 
(b) What is expectation value of measuring  ܵ௫-in this state? 
 
 
 
 
 
 
II-4 [10] 
 

The Yukawa potential has the form 
r

r
rV

)exp(
)(

 
  with constants  >0 and  >0. The 

potential describes the binding forces in an atomic nucleus. 
 
Using the Born approximation, calculate the amplitude f) of a wave scattered from V(r) and the 
total scattering cross section . Consider scattering in the forward direction only. 
 
 
 
 
 
 
 
II-5 [10] 
 
 
Assuming scattering energies are low enough to be dominated by the s partial wave, determine 
the scattering cross section for a particle by a potential given by: 
 

ܸ ൌ െ ଴ܸ    for (ݎ ൏ ܽ) 
 ܸ ൌ 0        for (ݎ ൐ ܽሻ. 
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II-6 [10] 
    
A hydrogen atom in its ground state is placed between the parallel plates of a capacitor. At time 

t< 0, the electric potential difference between the capacitor plates is zero. Starting at time t = 0, 

the electric potential of the capacitor plates changes. Hence, a spatially uniform but time-

dependent electric field is established between the capacitor plates. The electric field is described 

by E(t) = E0 exp(-t /) with = constant. 

 

(a) Calculate the probability that the electron is excited to the 2s energy state as a result of 

the perturbation. 

(b) Calculate the probability that the electron is excited to the 2p energy state as a result of 

the perturbation. 

Hint:  
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II-7 [10] 

 
The equation of state of a simple ferromagnetic material is given by the implicit expression 







 


kT

BJm
m tanh , 

where ),( BTmm   is the dimensionless magnetization (order parameter), B  is the external 
magnetic field, T  is the temperature, k  is the Boltzmann constant, and J  is a material-specific 
constant. 
(a) What is the critical temperature cT  below which the system exhibits spontaneous 

magnetization? (We refer to spontaneous magnetization when 0m  at 0B .) 
(b) Show that in the region just below cT , the spontaneous magnetization behaves as  

b
cTTTm ||const.)0,(   , 

and determine the value of the critical exponent b .  
 
 
 
 
 
 
 
 
 
 
II-8 [10] 
 
 
Initially, an ideal gas is confined to a volume Vi. The initial temperature of the ideal gas is Ti. 

Subsequently, the ideal gas is adiabatically expanded to a volume Vf. Calculate the final 

temperature Tf  of the ideal gas. 
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II-9 [10] 
 
Consider an ensemble of N distinguishable classical one–dimensional harmonic oscillators with 
identical frequency    and mass m  at temperature T.  
 
(a) What is the entropy ),( NTS  of the system? 
 
Hint: Start with the proper classical single-particle partition function: 
 

  ),( qpHe
h

dpdq
Z 

,  

 
where ),( qpH  is the classical single-particle Hamiltonian and h is Planck’s constant. 
 
 
 
 
 
 
 
 
 
II-10 [10] 
 
The rotational energy levels of a diatomic molecule are described by: 

 1
2

 ll
Il

  with quantum number l=0, 1, 2, … and moment of inertia I. The degeneracy 

factor of the energy levels is  gl=2l+1. 
(a) Calculate the partition function for the diatomic molecule. 
(b) Calculate the average energy  of the diatomic molecule. 
(c) Calculate internal energy and the specific heat capacity at constant volume of an 

ensemble of N diatomic molecules for very high temperatures T. 
 






























