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Physics PhD Qualifying Examination
Part I - Wednesday, January 19, 2011

(please print)

Identification Number:

STUDENT: Designate the problem numbers that you are handing in for grading in the
appropriate left hand boxes below. Initial the right hand box.

PROCTOR: Check off the right hand boxes corresponding to the problems received from
each student. Initial in the right hand box.

1

5 Student’s initials

3

4 .

5 # problems handed in:
6

; Proctor’s initials

9

10

INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE

COLLATED AND GRADED BY THE ID NUMBER ABOVE.

Use at least one separate preprinted answer sheet for each problem. Write on only one
side of each answer sheet.

Write your identification number listed above, in the appropriate box on each preprinted
answer sheet.

Write the problem number in the appropriate box of each preprinted answer sheet. If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 of 3).

. Staple together all the pages pertaining to a given problem. Use a paper clip to group

together all eight problems that you are handing in.

Hand in a total of eight problems. A passing distribution will normally include at least
three passed problems from problems 1-5 (Mechanics) and three problems from problems
6-10 (Electricity and Magnetism). DO NOT HAND IN MORE THAN EIGHT
PROBLEMS.

YOU MUST SHOW ALL YOUR WORK.



[I-1] [10]

Consider an object that is coasting horizontally subject to a drag force f(v) = —bv—cv?, where v
is the velocity and b and c are positive constants. Solve for v(t), that is, the velocity as a function
of time, given an initial velocity vy.

[1-2]  [10]

Write down the Lagrangian of a double pendulum consisting of two particles of mass m, and m,
connected by massless rods of length /; and /,. Consider the motion to be in the x-y plane, with
the gravitational force pointing along the -y axis. Write down the equation of motions. You do
not need to solve the equation of motions.




[1-3]  [10]

Two carts of mass m; and m; are connected by a spring with spring constant ;. One of the carts
is connected to the wall by another spring with spring constant k;. The only horizontal force
acting on the two carts is the spring force. Consider the case of horizontal oscillations of the carts

and

(a) Calculate the normal frequencies of the two carts for the case m, =m, =m and k;=3k

and ky=2k.
(b) Calculate the amplitudes a,, of the normal modes g »=a,expli(o, t-6,)].

(c) Find the general solution for the coupled oscillations of the two carts.

[I-4] [10]

Two point-like objects, each with mass m, are connected by a massless rope of length /. The
objects are suspended vertically near the surface of the Earth, so that one object is hanging below
the other. Then the objects are released.

What is the tension in the rope? In obtaining your final result, assume that // R << 1, and obtain

your final answer in leading order of // R
(The mass of the Earth is M , the radius of the Earth is R, the gravitational constant is G .)



[I-5] [4,4,2] (Multiple-Choice Questions)

(No partial credit; Full credit for correct answer per question, no details are needed to be shown;
Must get two out of three questions correct to pass this problem)

Must CIRCLE the correct answers (i.e., not cross, check, shade, etc., but CIRCLE)

(9 [4pts.] Two events occur on the x axis separated in time by A¢ and in space by Ax. A
reference frame, traveling at a speed less than the speed of light, in which the two events occur at
the same place (same spatial coordinates):

(A) exists no matter what the values Ax and Af.

(B) exists only if | Ax/ At < c.
(C) exists only if | Ax/At|=c.
(D) exists only if |Ax/ At [>c.

(E) does not exist under any condition.

(#) [4pts.] Two events occur on the x axis separated in time by Arand in space by Ax. A
reference frame, traveling at a speed less than the speed of light, in which the two events occur at
the same time:

(A) exists no matter what the values Ax and Ar.

(B) exists only if | Ax/At|< c.
(C) exists only if |Ax/At|=c.
(D) exists only if | Ax/ Az [> c.

(E) does not exist under any condition.

(#i) [2pts.] A meson when at rest decays 10us after it is created. If moving in the laboratory at
0.98¢, its lifetime according to laboratory clock would approximately be:

(A) the same.
(B) 20.52us .
(C) 2.00s .
D) 50.25uss.

(E) none of the above.



[I-6]  [10]

A capacitor is made from two infinitely long conductors with coaxial cylindrical surfaces as
shown below. The inner conductor, with radius a, is solid, the outer conductor, with radius 5,
is a cylindrical shell, with vacuum in between. Find the capacitance of a length L of this system.

[E-7]  [10]

Write the microscopic Maxwell equations in differential form and then show that the electric and
magnetic fields, E and B, satisfy the homogeneous wave equation, when there are no external
sources. Show that the solutions are transverse waves.



[I-8]  [55]

A long straight wire of radius b carries a current / in response to a voltage ¥ between the ends
of the wire.

(a) Calculate the Poynting vector S inside the wire (r < b)) for this DC voltage.
(b) Obtain the energy flux per unit length at the surface of the wire. Compare this
result with Joule heating of the wire and comment on the physical significance.

[1-9] [5,5]

A particle with charge ¢ and mass m is hanging from the ceiling by a spring. A large and flat
perfect conductor is placed under the particle. The particle is displaced downward, and released.
The particle starts oscillating slowly between z=0 and z=d/2 with angular frequency w. (Assume
the charge stops just above the plate when it comes to z=0, and does not come in contact with the
plate.)

Calculate

(a) the scalar and

(b) the vector potential

at point P shown in the figure below, using the far field approximation. The origin of the
coordinate system, O, is on the plate and the z-direction is vertical. » is the distance between O
and P. The spring is massless, and assume wd/c<<1. (Hint: assume the image principle can be
used.) :
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[1-10] [3,3,4]

A charge e is moving at a constant speed, ¥ along the x-axis of coordinate system K. Coordinate
system K’ is moving together with the charge. The x, y, z axes of coordinate system K are
parallel to the x°, y’, z” axes in K’ coordinate system, respectively.

(a) Express the x, y, z components of electric field in K using x, y, and z.

(b) Find the electric field in the direction with angle @ away from the direction of the velocity.
(¢) What are the directions in which the electric filed becomes maximum and minimum?

Recall that the Lorentz transformation of the electromagnetic field is give by
E = E, E =y(E -VxB"),
where y = (1- Vet )-1/2 , ¢ is speed of light, and || and L represent the parallel and

perpendicular components relative to the direction of ¥, respectively.






2 Problem 1.2’ Write the Lagrangian of a double pendulum consisting of two particles
of mass m; and my connected by massless rods of length I; and [;. Consider the
motion to be in the x-y plane, with the gravitational force along the -y axis. Write the
equation of motions. You do not need to solve the equation of motions.

Solution:
For the first particle:
T, = %mllfé'f
Vi = —maglycos(6y)
For the second particle:
zz = ls5in(6,) + lrsin(0,)
Y2 = lLicos(0y) + lacos(6y)

The kinetic energy is

Ty = ~my(i2 + 2)

[S R Nl

(1367 + 1262 + 2Ly 1yc05(0; — 0,)6,6,
The potential energy is

Va = —magys = —mog(licos(61) + lacos(6,))
which gives the Lagrangian

1 | . .
L= §(m1 + mz)lfgf + §mglg()§ + mglllgcos((?l - 02)0192

+ (M1 + ma)glicos(6) + maglacos(6s)

Equations of motion:

oL d /0
o= 5 (57)

fori=1,2.
(my + my)gli6; + lilama(cos[by — 02]92 - sinff; — 92]92)(91 — 92)

= ——(ml + mg)gllsin[Ol] - mglllgélégsin[ﬂl — 02]
1



maglyly + lilytny(cos(Oy — 0,)8, — sin(0, — 0,)0,)(0, — 6y)
= —nigglysin|y] + m.glllgl)légsin[ﬂl — 0s)

These are non-linear equations that cannot be solved easily.
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1-4 110]

Two points like objects, each with mass m , are connected by a massless rope of length /.
The objects are suspended vertically near the surface of the Earth, so that one object 1s
hanging below the other. Then the objects are released. What is the tension in the rope?

(The mass of the Earth is M , the radius of the Earth is R . the gravitational constant is
G)
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-5 [44.2] (No partial credit; Full credit for correct answer per question, no details are
needed to be shown)
Must CIRCLE the correct answers (i.e., not cross, check, shade, etc., but CIRCLE)

(a) [4pts.] Two events occur on the x axis separated in time by Arand in space by Ax.
A reference frame, traveling at a speed less than the speed of light, in which the two
events occur at the same place (same spatial coordinates):

) .
(A) exists no matter what the values Ar and Af. O - Adx - & [AA ~uf. a4 /
@xists only if | Ax/ At < ¢. y '
ey
(C) exists only if [ Ax/At|=¢. | ;’“”" | = /M{( <
[ dt ]
(D) exists only if [ Ac/Ar > c. | ! ‘
(E) does not exist under any condition. ! 7/( e - ,é/i( ( les Vel )

(b) [4pts.] Two events occur on the x axis separated in time by Arand in space by Ax.
A reference frame, traveling at a speed less than the speed of light, in which the two
events occur at the same time:

H

(A) exists no matter what the values Ax and Ar. 0 o *f b ("’_ M A X+
(B) exists only if | Ax/At|< ¢ d\ c»

(C) exists only if | Ax/At|=c. e c L o> /
N L R
(D) exists only if [ Ax/At|[>c. /A%/ /(/1/ vy

(E) does not exist under any condition.

('_',ffd“ Lk (u }lrw/l’)

(¢) [2pts.]JA meson when at rest decays 10us after it is created. If moving in the
laboratory at 0.98c¢, its lifetime according to laboratory clock would approximately be:

(A) the same.
}
(B) 20.52us . Vo e
5 T .
(C) 2.00us . e /‘//;L

@50.25;5 .

(E) none of the above.
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Problem 1.7|Write microscopic Maxwell equations in differential form and then show
t

hat the electric and magnetic ficld satisfy the homogencons wave equation, when
there are no external sources. Show that the solution are transverse waves.

Solution: )
V-B=2
. Cp
V-B=10

are the Gauss laws. -

(
Bt
is the Faraday’s law.
: OF
VxB- [L()E()Ft- = /_L()J

where )

Ho€g = —c—z

is Ampere- Maxwell law.
Wave equation:

Use the identity
VXxVxl=-VE+V(V.E)
and the same for B. For simplicity, assume J = 0, and p = 0 (no sources).

Take the cross product on Faraday’s law to get

VxVxE+ Qv—aftiﬁ =0
and the identify before, Gauss, and Amperes-Maxwell law to get
; o2
VxVxE=—V2E+V(V-E)+uoeo—6—t§:O
1 0°FE
2 —_—————
Ve c? Ot?
Same wotks for B.
Now asstime a plane wave solution
- E — Eoe'ika:—wt

The Maxwell equations give

k-E=0
k-B=0



4

That is, the wave propagate perpendicular to the fields. From F. aradays,
kx E=wB
shows that E is perpendicular to B (for real |k| and w and # 0).
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Ans.
The charge is oscillating between z=0 and d/2 at angular frequency w. The position of charge g is given
by follow.

d
z (1) =—cosar
L (1)=5cos

Using the principle of images, the effect of the conductor plate is same as ~q charge existing at —z,

position. This system is equivalent to an oscillating dipole moment, p(t) =qgd cosax .

Scalar potehtial atP:

Define the distance from the charge to point P as r,, and the distance from the image charge to the
pointPas r.

Scalar potential is given by follow.

Since d<«<r,

n 2\/r2$rz+ c0s0+(i) zr(liii—cosé)) and izl(ligt—cosﬁ)
* * 2 - r, r 2

27

Also, wd/c<<1

2 (t=r,. /c)=—§-cos[(0(t—r+,_ /c)]=§cos[a)(t——'r/c)-? aZi COSQ:!

-

=§cos[a)(1—r/c)]cos[a;ci cos HJi'—g—sin [a)(t—r/c)]sin[a;ft cos 9]

= %cos[a)(t—r/c)]

V(rt)=-2 [i_lJ~ qr[Z*(t—r*/c)+Z‘(t;r"/C)JcosB

dmey | r. 1 | Amer

jd cos &
E%ETcos[w(t -ric)]
0

Vector potential at P:

Current density: j(1)=) gqvi= —qg—wsin ar? —(—q)(~—g-wsin a)tZJ =—qgdwsin w7



2 —gdwsin| @(t-r/c)
A(x,t):% [ g'"[r( ),
12

The integration introduces factor of d (<<r). In the first order approximation, we can replace r with the
value at the center.

o1 t— ./ .
5 A(x,t)::——‘u”qdw sin [a)( ! L)]i
47 r
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Physics PhD Qualifying Examination
Part Il - Friday, January 21 2011

Name:

(please print)
Identification Number:

STUDENT: insert a check mark iii the left boxes to designate the problem numbers that
you are handing in for grading.

PROCTOR: check off the right haiid boxes corresponding to the problems received from
each student. Initial in the right harid box.

; Student’s initials

3

g # problems handed in:
6

; Proctor’s initials

9
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INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

1. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE
COLLATED AND GRADED BY THE ID NUMBER ABOVE.

2. Use at least one separate preptinted answer sheet for each problem. Write on only one
side of each answer sheet.

3. Write your identification nuriber listed above, in the appropriate box on the preprinted
sheets.

4. Write the problem number iii the appropriate box of each preprinted answer sheet. If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (c.g. Problem 9 — Page 1 of 3).

5. Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all eight problems that you are handing in.

6. Hand in a total of eight probléms. A passing distribution will normally include at least
four passed problems from ptoblems 1-6 (Quantum Physics) and two problems from
problems 7-10 (Thermodynamiics and Statistical Mechanics). DO NOT HAND IN
MORE THAN EIGHT PROBLEMS.

7. YOU MUST SHOW ALL YOUR WORK.




[I-1]  [10)

A particle is in a one-dimensional potential well given by V(x) = —¢8(x), where o(x) is the
Dirac delta function and ¢ > 0 is a coristant.
Find the energy and the normalized wave-function of the bound state(s).

Hint: You must carefully consider atid study the possible discontinuity in the derivative of the
wave function y'(x) at x=0. You can do this by integrating Schrédinger’s equation for the
above system from —¢ to +& and the let & — 0.

This is at the heart of this problem, and without a meaningful treatment and analysis of this
discontirtuity, you will not pass this problem.

2] [10]

Consider a particle of mass m in a otie-dimensional box with infinitely high walls at x=0 and
x=L.

(a) Fmd the eigenenergies E, and hormalized eigenfunctions ¢, for the particle in the box

(n=12,...). :

(b) Calculate the first order correctiofi to the unperturbed energy E; @ for the particle due to the
2,.2

following perturbation H'=107E, —E— .Here, E, = ; 722 is a constant.

m




[11-3]  [10]

Consider an electron spin and 4n arbitrary direction defined by the unit vector
€ = (sin $cos @,sin Isin ,cos ) in the three-dimensional space, specified by the polar (9) and

the azimuth () angles. In the usual representation, the electron spin operator can be expressed in
terms of the Pauli matrices

§=§-J, g=(o,,0,,0.),

0 1 0 i 1 0
o_= s O = ,Uz: .
* 1 0 7 i 0 0 -1

Now assume that we measure S, , and itis +#/2.

What is the probability that the compotient of the spin along the direction € is +%/29

[II4]  [10]

. . . ‘ . vy -
A particle with mass m is scattered by 4 Yukawa-potential, V' (r) = —2 ¢ ",
ar

Using the Born approximation, find the differential scattering cross section and then calculate
total scattering cross section.



[ 1I-5) (10]

Consider a truly monoenergetic beam of electrons of energy E. The beam of electrons is incident
from the left onto a rectangular potential energy barrier with height ¥, > 0 and width 4. (see Fig.
below).

I I1 I11

Vo

0 a X

(a) Write down the Hamiltonian H for the electrons in region I, IT and III.

(b) Find the eigenfunctions ¥ (x) iti regions I (x <0),I1 (0 <x<a)and Il (x > g) in the case
when the energy of the electroti is less than the height of the barrier, i.e., 0 < £ < Vy.

(c) The eigenfunctions assume the form w(x)=Cexp(ikx) for x—>o and
w(x) = Aexp(ikx) + B exp(~ikx) for x — —o.

2
Calculate the transmission coefficient T =E )

[ 11-6 ] [10]

A harmotiic oscillator of frequency w is in its ground state (#=0) in the infinite past. It is
subjected to a time-dependent perturbation Ve (X) = Axexp(—at?), where x is the position of

the particle relative to the equilibrium point. To leading order in 4, determine the probability that
the system will be found in the first excited state (#=1) in the infinite future.



[ 7] [10]

Two bloc‘ks are made of identical metal of specific heat (per unit mass) ¢ and are isolated from
the rest of the outside world, but not ftom each other. Initially, the first block, with mass 2m , has
temperature T'; the second block, with mass m , has temperature 47 . They are then brought into
contact with each other, and eventually they come to thermal equilibrium with each other.

What is the total change in entropy AS,, for the system (the two blocks combined)? You must

express your answer in terms of m, ¢, and T (not all of them may show up in your final
answer).

[I-8]  [10]

Consider the Van der Waals gas given by the equation of state and energy given by

(P+—%—)(v—b)=RT :

v

u(Tvy=cT -2 |
1%

where a, b, R, and ¢, are positive constants. The gas undergoes a reversible (quasi-static)

adiabatic expansion from v to 2v. Obtain the ratio of the final and initial temperatures, T, /7, .

You must express your answer in tertits of the variables and constants given above ( i.e., do not
reinvent hew constant or redefine new variables)



[1I9]  [10]

The partition function of a classical one-dimensional system can be written as
Z = Idp dgexp(~E(p,q)/ kT ), where p is momentum, ¢ is position, and E(p,q) is the classical
energy. For the simple harmonic oscillator of frequency  and mass m, determine the entropy.

[1I-10]  [10)

Solve for the pressure of a neutron gas at 7 = 0 (neutrons are spin % particles). How does it
compare to the pressure of an ideal gas under similar N; T; V conditions?
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the fact that the nearer £ is to Vin (4.30) the smaller ¢ is. This last fact can be

A_.r—_-’-"")

: These
scen analytically from the last two |
K N A 1. \
tan ¢ = z__( ‘ (4.31) Aand Bint
k, I
» 42 POTENTIAL WELLS
We shall now use the same methods to study a situation in which stationary cnergy
states occur and which explains qualitatively the reason for atomic and nuclear
cnergy levels. Let the potential be in the form of a rectangular well, as in Fig. The first of
4.5. At the same time, by making V positive, we can study the penetration of a conveniently
potential barrier of finite width, as opposed to the infinite barrier of Fig. 4.1. We
shall therefore investigate three cases: The first is when there is a beam of particles
of energy E (E > 0) incident from the left and V is either positive or negative but
V < E. The second is when V is high cnough (V> E) for the central region,
now become a barrier, to be forbidden from the classical point of view; and the
third is when V is again negative and E is also negative, so that the regions to
right and left are forbidden and the particle is confined in the neighborhood of the or, finally, usi
well.
CASE L. V < E, E > 0. The wave functions in the three regions are, as before,
Region I: Yy = AeMT 4 Be M pky = (k)2 (4.32) The reflection
Region II: hy = Ce™* 4 De™ % pl = [2m(E — V2 (4.33)
Region HI: Wy = Fe (4.34) Problem .
. ) ) your ansy
and the boundary conditions at x = —g and x = +4a give the four equations see the an
-ikya ikya - ik ik:a
Ae + Be™® = Ce + De Problem 4
kl(Ae-iha - Beiha) = kz(CB‘ih' — Deik:a) argument
Ceikzn + De—ik;a _ Feikm The qua
kz(Ce,'h. . De—,’)u,,) - leeu,. i SkCtCth in Flj
I I m o
Y = >
I I m V(x) = V(>0)
Vi) =0 V(ix) =0
o -a 0 @ i
Vix) = V(<0)
-a 0 a E=vV
FIGURE 4.5 FIGURE 46
Rectangular potential well and barrier, showing the three regions of integration.
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These equations are solved by the method of determinants (or by solving
the last two for C and D in terms of F, putting these into the first two and finding
A and B in terms of F). The results are

) Uk, &k
A = Fet™l cos 2k,a — - i(~' + -2 )sin 2k,a (4.35)
2\k,  k,
Uo(ky k. ,
B = : m(kll = ki)sm 2k, (4.36)

The first of these gives the transmission coefficient of the entire barrier, most
conveniently expressed in terms of its reciprocal:

L |a? Uik, k,\?
. lf’ = cos® 2k,a + 4 (k; + k:) sin® 2k, a
Uik,  ky\? |
=1 +3(k—:- ﬁ) sin® 2k, a (4.37)

or, finally, using the definitions of k, and &,,
1 | N A

’,. et
T 4EE - V)

The reflection coefficient is

sin? 2k, a (4.38)

R=1-T (4.39)

Problem 4.1. Let V < 0 (potential well). Evaluate 7 in the limit £ — 0. Make sure
your answer is valid for all (ncgative) values of V. Show how one should be able to
sce the answer without doing the whole calculation,

Problem 4.2. Find R dircctly and verify that it satisfies (4.39). Explain by a physical
argument why there are positive energies for which R = 0 but none for which T = 0.

The qualitative behavior of T and R as functions of the energy E is
sketched in Fig. 4.6.

E=V

FIGURE 4.6
Transmission and reflection coefficients of a rectangular potential barrier.
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The most immediate application of this theory is to the collision of slow
clectrons with atoms. Aithough the situation is here three-dimensional, at low
cnergies it is rcasonable to compare it to the encounter of an electron with a
potential well in one dimension. The attractive potential exists because as the
impinging electron enters the atom, the nuclear charge is no longer screened from
it by the atomic clectrons. Since R is a measure of the obstruction offered by the
obstacle, one would expect that the scattering cross section for slow clectrons
would go through a minimum at some point. The results of measurerents on
rare-gas atoms in the low-energy range are shown in Fig. 4.7. The striking decrease
in cross section, as a result of which the gases are almost transparent to electrons
of about I ¢V, was discovered by Ramsauer in 1920 and independently by
Townsend and Bailey later. It scems to be characteristic of many elements, subject
only to the difficulty of obtaining monatomic vapors. The absence of further
maxima and minima is due to complications involving states of differing angular
momenta which set in at higher energies.

CASE 2. V> E > 0. The treatment in case 1 must be changed when the barrier
becomes high enough to be impenetrable from the classical point of view. This is
mirrored in the fact that &, in (4.33) now becomes imaginary. As in the last section,
we write it as ix, and note that none of the algebraic details of the theory
are changed. We can therefore rewrite (4.35) and (4.36) at once (using sin ix =
i sinh x, cos ix = cosh x) as

‘ 1 [k
A = Fe*™ ! cosh 2k,u — — i(~'— ~ %2 ) sinh 2i,a (4.40)
2\Ky Kk
1 k
B=—- iﬁ‘(—"l + *‘) sinh 2k,a (4.41)
2 \ky  x,
from which
1 |af [k :
7= ,—F—, = cosh? 2x,a + i (é - —:—f) sinh? 2x,a
Liky 1,\* .
=1+ Z(;i + 7(:2) sinh? 2x,a
or o~
1 1 y2 )
5 5: =1+ Z—‘—'—"E(V e sinh? 2x;a (4.42)

This is the formula for the transparency of a barrier which, classically
speaking, should not be transparent at all. [The possibility of such transparency
was mentioned in the remarks following (4.31).] It gives rise to a number of
interesting and typically quantum-mechanical effects such as the slow emission of

40} —-

5
r
,’

Cross section, in units of xaj
N
5]

e
(=}

alpha particles
a4 metal surface
shows how the
negative valucs

Problem 4.:
of height 15

FIGURE 48

Reflection coefficient
¥V >0 and well depti
Resonance effects are
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CASE 3. V< [ < 0. Here the wave function must decay exponentially on both
sides of the potential well, and the problem of matching solutions is somewhat
different. 1t is illustrated in Fig. 494, where for all given values of a, V,and E we
can attain a smooth matching at the left side of the well but have no further
adjustable parameters available to make  and dyj/dx continuous at the right.
Only for certain values of £ will a smooth match be possible at both edges of the
well, and it is thercfore only for these values that allowable solutions of (4.1) exist,
Three possibilities, corresponding to successively higher values of E, are shown in
Iig. 4.9b. In the case illustrated, only these three values of £ are possible. In actual
cases, the number of energy states may be finite (for example, one for the deuteron,
cf. Chap. 19) or infinite, as for hydrogen (Chap. 6). The calculation of E cannot
be carried out in closed form; since the graphical method ordinarily used is of no
general interest, we omit it here. We shall encounter a more interesting example of
the same procedure in Sec. 19.1. I mention here only a simple limiting case,
already discussed at the end of Chap. 1, in which the well becomes infinitely
deep (V- —w). The wave function must vanish (why?) at each edge, and
the only ones that satisfy these boundary conditions correspond to energies

_ (nmh)?

E
2ma?

n=1,273,... (4.43)
A few of the wave functions are shown in Fig. 4.10.

Problem 4.4. Why are the nonpositive values of 7 not included in (4.43)?

One has in case 3 the basic reason given by quantum mechanics for the

occurrence of definite energy states in nature. They are a standing-wave phenome-
non, as was first suggested by de Broglie. The relation of energy values to the

Vi(x)

\
(a)
. RS
% 5 ‘? :[ E:l
FIGURE 4.9
p— E, (a) Wave function of a particle in a potential well,
E showing the difficulty of matching ¥ and its derivative
! at both sides of the well when E is chosen arbitrarily.
(b} Properly matched eigenfunctions, drawn about the
(b) corresponding encrgy levels.
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Two blocks are made of identical metal of specific heat (per unit mass) ¢ and are isolated
from the rest of the outside world, but not from cach other. Initially, the first block, with
mass 2m . has temperature 1'; the sccond block, with mass mr. has temperature 47 .
They are then brought into wnmu with cach other, and eventually they come to thermal
cquilibrium with cach other.

What is the total change in entropy AS, . for the system (the two blocks combined)?

You must express your answer in terms of 1, ¢, and T (not all of them may show up in
your final answer).

b, + @, = 2 =2l w ! ww//d

: (/""“ "y
2w ¢ (Ty-T) pwie (T- 4l .
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Consider the Van der Waals gas given by the cquation of state and encrgy given by

(P + %)(v ~b)=RT

V

u(l.v)y=¢T _—
v

where ., b, R, and ¢, are positive constants. The gas undergoes a reversible (quasi-
static) adiabatic expansion from v to 2v. Obtain the ratio of the final and initial
temperatures, T, /T, . You must express your answer in terms of the variables and
constants given above ( i.e., do not reinvent new constant or redefine new variables)

O AT 4.4 T
Au " /r,,dv 73,/’“7 4

©

-6 4
(Ju; CS& -PJ/I/“ ad SQ;O

AU! + P&‘/U‘ < 2

| a KT 475 Ay -
“ AR < v = o
Cp AT 7 25 o r-6

KT dp = o
C/[/ JT J/v‘//b v -
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Z-Problem II-10/Neutron gas

Solve for the pressure of a neutrou gas at T = 0. How does it compares to the
pressure of an ideal gas under similar N, T,V conditions?

Solution Protons arc s = 1/2 Fermions. At T = 0 the the chemical potential is
cqual to the Fermi energy. The Ferini energy is defined by the number of particles
in the system
25 + 1)V 4 25+ )Vdr .
VS L P
h3 h3 3

where pp is the Fermi momentum. The Fermi energy is

. _Pp R 3 23
oo e )
2m 2m \4n(2s + 1)

The energy of the system is

. (2s+ 1)V/ s PP 3 —2/3

The pressure is
(BE ) 2F 2N
p=—
N

— = S = e £ ()
ov/)r 5V T syl AL

For an ideal gas, PV = NrgT =0, at T = 0.



