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Physics PhD Qualifying Examination
Part I - Wednesday, January 7, 2009

(plcase print)

Identification Number:

STUDENT: Designate the problem numbers that you are handing in for grading in the
appropriate left hand boxes below. Initial the right hand box.

PROCTOR: Check off the right hand boxes corresponding to the problems received from
cach student. Initial in the right hand box.
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5 Student’s initials
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4 .

5 # problems handed in:
6

; Proctor’s initials

9
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INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

- DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE

COLLATED AND GRADED BY THE ID NUMBER ABOVE.

- Use at Icast one separate preprinted answer sheet for each problem. Write on only one

side of cach answer sheet.

Write your identification number listed above, in the appropriate box on each preprinted
answer sheet.

Write the problem number in the appropriate box of each preprinted answer sheet. If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 of 3).

. Staple together all the pages pertaining to a given problem. Use a paper clip to group

together all eight problems that you are handing in.

Hand in a total of eight problems. A passing distribution will normally include at least
three passed problems from problems 1-5 (Mechanics) and three problems from problems
6-10 (Electricity and Magnetism). DO NOT HAND IN MORE THAN EIGHT
PROBLEMS.

YOU MUST SHOW ALL YOUR WORK.



(-] 12.1,2,3.2]

A projectile is fired from height y(0) = 0 and horizontal position x(0)=0 with an initial
velocity v (0)=v_and v (0)=v . The force of air resistance is proportional to the momentum,
F'™ =—kp, where k is constant. The gravitational acceleration is g, pointing vertically down.

(a) Determine the velocity and position of the projectile as functions of time. That is, find
v (1),v, (1), x(1), y(t) given the initial conditions described above.

(b) Find an implicit equation for the time T for the projectile to fall back to ground,
WT)=0.
(c) Thus, find the range R = x(T). F ind a way to express R as a simple linear function of T'.
(d) Assuming that kT <<1 and kv /g << 1, find an expression for T, including the first
non-trivial correction,
T =c[l+c,(kv,, lg)+ O(kvyo /g)2 1,
with ¢, and ¢, expressed in terms known constants and the initial conditions. Neglect the
O(kv

(¢) Find a similar expression for R up to leading order in O(kv,, /g).

/g)’ term.

Vo

(121 16:4]

A particle of mass M is constrained to move on a horizontal plane. A second particle, of mass m,
is constrained to a vertical line. The two particles are connected by a mass-less string which
passes through a hole in the plane (see F igure below). The motion is frictionless.
(a) Find the Lagrangian of the system and derive the equations of motion.
(b) Show that the orbit is stable with respect to small changes in the radius and find
the frequency of small oscillations.
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| 1-3] [10]

Two 1dentical harmonic oscillators are placed such that the two masses m=my=m slide against
cach other while oscillating. Consequently, a frictional force proportional to the instantaneous

relative velocity, F/""" = _p (fci - X, ), acts on the sliding masses. (The motion of the two
masses is horizontal along the x direction.)
(a) Find the equation of motion for each mass using Newtonian Mechanics.
(b) Solve for all possible solutions x,(f) and x,(¢), depending on the values of &, b and m.
(c) Discuss the motion of the two masses.
(You may express your answers in terms of @, =~k/m and the damping factor
B=bim.)

[I-4] [10]

A particle moves in a plane under the influence of a central force with a fixed force center. The
mass of the particle is m, its angular momentum is /. The observed trajectory of the particle
(expressed in planar polar coordinates) is given by

r(9) = ke,

where £ and «a are constants. Find the force £ (r) causing this motion.

[ I-5 ] [15111,1,6]

Consider a relativistic particle of mass m moving with velocity v. Write down the following
relations:

(a) Relativistic momentum p of a particle of mass m moving with velocity v.

(b) Relativistic kinetic energy K of a particle of mass m moving with speed v.

(¢) Rest energy F, of a particle of mass m.

(d) Total energy E of a particle of mass m moving with speed v.

(¢) Show that the relativistic momentum and relativistic kinetic energy are related by:

p’c’ =2Kmc* + K with speed of light ¢ = 299,792,468 m/s.

3



[1-6] |10

Two semi-infinite grounded metal plates lie parallel to the xz plane, x>0, one at y =0, the
other at y = a as shown below. The left end at x = 0 is closed off with an infinite strip insulated
from the two metal plates and maintained at a constant potential ¥, . Find the potential inside this
slot of width «, i.e., inside the region x>0, 0 <y <a. You may express your final answer as
an infinite series, but you must determine all coefficients.

A

y

[-71  [10]

Can the following vector functions represent static electric fields? If yes, determine the charge
density.

(a) E(F)=Fx(¢xF) (¢ isaconstant vector);

(b) E(F)=cr¥ (¢ is a constant and  =|  |).

Note: This is not a “yes or no” question; without showing the correct technical steps, you will get
zero credit. This problem is to test your technical ability with differential vector operators. If you
cannot demonstrate that you are competent in manipulating with various differential operators

(related to V), you are not going to pass this problem.



[I-8]  [55]

A long straight wire of radius b carries a current / in response to a voltage V' between the ends
of the wire.

(a) Calculate the Poynting vector 5‘ inside the wire (r < ) for this DC voltage.
(b) Obtain the energy flux per unit length at the surface of the wire. Compare this
result with Joule heating of the wire and comment on the physical significance.

[1-9] [10]

An electron is released from rest and falls under the influence of gravity. While falling a distance
h, what fraction of the potential energy lost by the electron is radiated away?

[1-10]  [10]

Consider the scattering of a photon by an electron (Compton scattering). The electron is initially
at rest. In the process, the photon losses some of its energy depending on the scattering angle 9,

A=A, +—’l[1—cos(9)]. (1)
mc

Here, Ais the wavelength of scattered photon. 4, is the wavelength of incident photon. 4 is the

Planck constant, m is the rest mass of electron, and ¢ is the speed of light.
(a) Derive equation (1).
(b) Explain why the photon cannot be absorbed totally by the electron.

photon

photon electron

electron
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292 % / CENTRAL-FORCE MOTION

n = 1 is just that of the harmonic oscillator (see Chapter 3), and the case n = -2
is the important inverse-square-law force treated in Sections 8.6 and 8.7. These
wo cases, n = 1, —2, are of prime importance in physical situatgons. Details of
some other cases of interest will be found in the problems at the end of this
chapter.

We have therefore solved the problem in a formal way by combining the
equations that express the conservation of energy and angular momentum into
a single result, which gives the cquation of the orbit 8 = 0(7). We can also attack
the problem using Lagrange’s equation for the coordinate 7:

oL _ doL_

ar dt or
Using Equation 8.7 for L, we find

w(v— §?) = — = F(n (8-18)
ar

Equation 8.18 can be cast in a form more suitable for certain types of calcu-
Jations by making a simple change of variable:

=

~ |-

First, we compute

Next, we write

!

d*u d( p) dtd{ p)\_ eB.
— = -7} = |~ T = — =TT
de*  do { de dt { 0

and with the same substitution for é, we have

d*u v,
o =JE 7_;121

Therefore, solving for 7 and 62 in terms of u, we find
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Subsliluting Equation 8.19 o Equation 8.18, we obtain the tansformed
equation of iotion:

diu

ko g pol F(1/w) 8.20)
dgr T T e MU ®

which we may also write as

ey 1 e el
w\y) T A (8.21)

This form of the equation of motion is particularly useful it we wish to find the
torce law that gives a particular known orbit r = r(6).

EXAMPLE 8.1

Find the force law for a central-force field that allows a particle to maove in a
logarithmic spiral orbit given by r == ke, where k and @ are constants.

Solution. We use Equation 8.21 to deternine the force law K. First, we

determine
a4 (1 _i(ﬁ_i‘f e
dae \ r de \ k k

i’,i 1: _ q2€'~tr() _ (Y:
do* \r k r

From Equation 8.21, we now determine K.

__[2 0‘2 1
. *;;z(‘; *:)

2
iy = —(a® + 1) (8.22)
pr’

Thus, the force law is an attractive inverse cibe.

Determine r(t) and 8(t) for the problem in Example 8.1.

Solution. From Equation 8.10, we find

l l

0‘ = —-— == N :
[.LT") “k.’elcrﬂ

(8.23)
Rearranging Equation 8.23 gives

{
e = *; dt
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Problem 1L LY
P = -eyy, Yy = z;ltz, O P o= ~3yct2§'; p = —ygey. Therefore (g LEB0) 0 2 =

" (gep?. Now, the e

o e

it takes to fall a distance h i3 given by h = ,‘iyt"' >t = \/2h/g, so the cnergy vadiated in falling a distance h

olye
e

2
15 g = Pt = ) \/‘Zh/g. Meanwhile, the potential energy lost is U, = mgh. So the fraction is

/= Urad _ pog’e? [2h 1 _ moe® |29 _ (4 x 1077)(1.6 x 10719)2 [(2)(9.8) _
" Upos Gme g mgh 6rmcV h° 6mw(9.11 x 10-31)(3 x [08) { (0.02) - -

Iividently almost all the energy goes into kinetic form (as indced I assumed in saying y = 1gt?).
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Physics PhD Qualifying Examination
Part II - Friday, January 9, 2009

(please print)

Identification Number:

STUDENT: insert a check mark in the left boxes to designate the problem numbers that
you are handing in for grading.

PROCTOR: check off the right hand boxes corresponding to the problems received from
each student. Initial in the right hand box.

; Student’s initials

3

;_1 # problems handed in:
6

; Proctor’s initials

9

10

INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

- DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE

COLLATED AND GRADED BY THE ID NUMBER ABOVE.

. Use at least one separate preprinted answer sheet for each problem. Write on only one

side of each answer sheet.

Write your identification number listed above, in the appropriate box on the preprinted
sheets.

Write the problem number in the appropriate box of cach preprinted answer sheet. If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 of 3).

Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all eight problems that you are handing in.

Hand in a total of eight problems. A passing distribution will normally include at least
four passed problems from problems 1-6 (Quantum Physics) and two problems from
problems 7-10 (Thermodynamics and Statistical Mechanics). DO NOT HAND IN
MORE THAN EIGHT PROBLEMS.

YOU MUST SHOW ALL YOUR WORK.



[1-1]  [10]

Consider a particle in a one-dimensional potential well of width L with infinitely high walls:
0 if0<x<L

Vix)= .
w  otherwise

At ¢t = 0 the wave function 1s

2 .
w(x,0) = \/__L: for L/4<x<3L/4 _
0 otherwisc

At time >0 we measure the energy of the particle. What is the probability that the energy of
the particle is greater than the ground-state cnergy of the particle in the potential-well?

[H-2] {10]
: . : * . . .
Consider a harmonic oscillator, H® = TZE— + —ima)fxz , with a stationary perturbation term,
m

w :—12—pma)5x2 (p<<l).

(a) First, solve for the exact cigenvaules of H = H° +W , and expand the cigenvalues in powers
of p.
(b) Next, determine the energy levels of H up to first order corrections, by treating W as a time-

independent perturbation.
. . mao . mo, 1 .
(Hint: Express W in terms of a = = x+ pland a” = X —— p | (creation
2h 2h mao,
and annihilation operator for the harmonic oscillator) and work with the matrix elements

(w2 |W|y?), where y, are the cigenstates of H”).

mo,



l -3 l “,2,2,2,2,”

Consider an clectron spin S ina time-dependent magnetic ficld
B =B,z + B icos(awt) + B, ysin(wr).
e

The magnetic moment of the clectron is given by i = ~—S | where ¢ is the magnitude of its
m

charge and m is its mass. In this problem, we will only consider the interaction between the
magnetic moment of the clectron and the magnetic ficld.

(a) Express the Hamiltonian as a 2 x 2 matrix using the explicit form of S .
(b) We will assume a solution of the time-dependent Schrédinger equation of the form

i ]2
) a.e i/l
At 1
pr)=e (a gt |’

2

Using the time-dependent Schrodinger equation, obtain a system of equations for @, and a,.
(¢) From the constraint of a non-trivial solution for @, and a,, determine the two possible
solutions A, for 4. Express your answers in term of @, = eB, /m and w =eB /m.

(d) Let @ =@, . Then find g, and a,, and the corresponding solutions v . (t) for the two

allowed values A, of 4.
(¢) Suppose that the clectron is in a spin-up state at ¢ = 0. Find the corresponding y(7) by

taking the appropriate lincar combination of the solutions in (d).
(f) Compute (S.) as a function of time for the solution you found in (¢)

[ 11-4] 15,51

Evaluate in the Born approximation the cross-section for scattering by a “delta-function”
potential. The scattering potential, or rather potential energy, is equal to V(r) = B (r), where we
take the force center as the origin. B is a constant and is clearly equal to the volume integral of

the potential: B= _‘.V(r)d *r = constant.

(a) Obtain the differential scattering cross section and the total scattering cross section using
the Born approximation.

(b) Discuss this case with a delta-function potential with respect to the interaction potential of
very small range which is much less than the deBroglie wavelength. To what type of
particles is this case applicable? Is this scattering isotropic and thus velocity
independent? Discuss the applicability of the Born approximation.



[H-5]  [10]

5

e . .
yp— use the uncertainty principle, ApAx > # to find
e, r

Given the potential energy of V(r) =—

the Bohr radius #, and the ground state cnergy £, of a Hydrogen atom.

(Hint: write down the kinetic cnergy in terms of 7, using the uncertainty principle.)

[11-6]  [10]

A one-dimensional harmonic oscillator is in its ground state y, at = —oo. It is perturbed by a

small time-dependent potential V(1) = —a xexp(—t?/t?) [aand 7are constants, x is the position
of the oscillator.]. What is the probability of finding the oscillator in the first excited state | at
t = +00 ? The following expressions may be helpful:

1
mo)t 1 mao - mae
- ——— e e X O
(//n(x) (Jrh) o exp[ 5 X )H,{)@/ P J,

Hy(x)=1,
H,(x)=2x.



[H-7]  [10]

Consider a gas with the cquation of state
P(T,n) = —an’ —%T—log(l —bn),

where T is the absolute temperature, n = N/V (number of particles per unit volume), a and b
are positive material-specific parameters, and & is the Boltzman constant. The constant-volume
heat capacity of the gas is a constant, C, > 0.

Consider that this gas undergoes “firee expansion” from V, to V,. (In this process, also referred
to as the Joule cxperiment, the gas is thermally insulated from its environment and “suddenly”
cxpands into vacuum.) Its initial temperature is T,. Obtain the final temperature T, of the gas.
(You must cxpress the final temperature 7, in terms of T\, V,, V,, and other constant given in
the problem.)

[1I-8]  [64]

(a) Consider a system that is partially in the vapour phase and partially in the liquid phase such
that one may consider it in a chemical equilibrium. Such a system is described to exhibit a first
order phase transition as it undergoes a phase change from the vapour phase to the liquid phase.
The cquation that describes such a phase transition is called the “Clausius-Clapeyron cquation”.
The Clausius-Clapeyron cquation is a relationship between “observable quantities” and
determines the co-existence line in the P-T plane, namely the “vapour-liquid curve”. Derive this
cquation and show that it has the form:

()7
ar),, T, -v)’

here L is the latent heat of transition, v, and v are the volumes of the vapour and liquid phase,
respectively and P and T denote pressure and temperature.

Hint: In equilibrium the Gibbs free energy of the vapour phase is equal to the Gibbs free energy
of the liquid phase for a first order phase transition.

(b) Define the Gibbs free energy in terms of the variables (N, 1) where N is the total number of
particles and y is the chemical potential. What is the value of the chemical potential, 4, for an
indeterminable collection of Bose particles (e.g., photons or phonons ). Is #>0, <0, or
# =07 Give a clear explanation for the answer that you select.



l -9 l l293939zl

The classical Hamiltonian of the one-dimensional g-state Potts model is given by

N-l
H = _*JZ5O';‘<TM *
i=0
where the N +1 “spins” o,,0,,...,0y, take the values o, =1.2,....,q (3, is the Kronecker

delta). While it may look complicated, you don’t have to worry about it, since here, we provide
you with the partition function that one can obtain from this Hamiltonian:

K N
Zy(@)=qle” +q-1)",
where K = J /(kT).
(a) Define Z,(q)=Z,(q)/q"" ,set ¢ =N, and compute
Z, = LiﬂZN(q =N)
You will want to utilize the identity € = }l\,i_fgl(l +x/N)",

(b) Find the free encrgy F for Z
(c) Find the internal energy U that follows from (b).
(d) Find the heat capacity C(T') that follows from (c), and sketch its behavior.

[11I-10] [3,3,4]

Consider a system consisting of two particles and three energy levels E\=0, E;=¢ and E3=3¢.

(a) List all possible arrangements of the system (microsates) if the particles are identical
bosons. Calculate the energy of the system for each microstate. Are the energies of the
system degenerate? '

(b) List all possible arrangements of the system (microstates) if the particles are identical
fermions. Calculate the energy of the system for each microstate. Are the energies of the
system degenerate?

(c) What is the probability of finding the system at any instant in a doubly occupied state

according to Bose-Einstein statistics and according to Fermi-Dirac statistics?
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/ 138 Chap. 8 Thermodynamic Potentials
Jor T8 |

%)

TABLE 8.2* Conditions on thermodynamic variables for different systems or
processes.

State of System Valid Valid Equilibrium
or Type of Process Equation [nequality Condition

S and V constant dS =dV =0 dU =0 Minimum U
S and P constant dS = dP =0 dH =0 Minimum H
I and V constant dT = dV =0 dF =0 Minimum F
T and P constant dT = dP =0 dG =0 Minimum G
Adiabatic dQ =dU + PdV =0 ds = 0 Maximum S

Figure 8.2 Liquid and vapor
phases of a substance in
¢quilibrium at temperature T
and pressure P; (a) initial
state; (b) final state. (a) (b)

phase." The state of the system is defined in terms of the variables
(T, P, ni, n{'). Consider a second state differing from the first only in the
number of kilomoles of liquid and vapor and defined by (T, P, n3, ny') (Figure
8.2). Mass is conserved so that

n! + n{ = nj3 + ny. (8.24)

We define g” and g" as the specific Gibbs functions of the liquid and vapor,
respectively, associated with the particular substance under investigation.
Noting that the Gibbs function is an extensive variable, we have for the two
states:

G, =njg" +nig", (8.25)
G,=njg" +nyg" (8.26)

* Adapted from Table 7.2 in Thermodynamics and Statistical Mechanics by P. L. Landsberg,
Dover Publications, New York, 1990.

 The notation is that used in section 4.3: one, two, and three primes denote the solid, liquid,
and vapor phases, respectively. Here 1 refers to the initial state and 2 to the final state.
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Sec. 8.7 Application of the Gibbs Function to Phase Transitions 139

dP{ e

Figure 8.3 Relationship
between temperature and
pressure for a liquid and vapor
in equilibrium. The derivative
dP/dT is the slope of the
vaporization curve.

Suppose that a reversible transition takes place from state 1 to state 2. Since
(AG)rp =0 for a reversible process, it follows that G, = G,. Equating
Equations (8.25) and (8.26) and using Equation (8.24), we find that

g =g". (8.27)

The specific Gibbs function is the same for the two phases. This is true for all
phases in equilibrium, that is, for all points on the curve of the phase transfor-

mation (Figure 8.3).
Since at a temperature T + dT and a pressure P + dP we still have

equilibrium, it follows that g” + dg” = g” + dg”. Combining this with
Equation (8.27), we have
d gll —_ d gI” .

Using the expression for the differential previously derived, we can write

—s"dT + v" dP = —s" dT + v" dP,

or

(SIII — s”)dT — (,vlll —_ v”)dP.

Thus

dP SIII — s”

dT ,vm — ’U” ° (828)
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Sec.8
From the definition of entropy, -
mo__ oG = 823 (8 29)
s $ T :
where €5, is the latent heat of vaporization. Since heat is absorbed as a liquid h
becomes a vapor, £ is positive and s" > s”. Substituting Equation (8.29) in Wi
Equation (8.28) gives ice 1
(-45) _ " (liquid-vapor) (8.30) o
dT ” T(vu/ — ’U”) q p * :

This is the famous Clausius-Clapeyron equation. It gives the slope of the curve
denoting the boundary between the liquid and vapor phases, that is, the vapor- For
ization curve. Similar expressions hold for the sublimation and fusion curves: '

dP €3 .
— ) =T lid- 8.
(‘dT>13 Too" — ) (solid-vapor), (8.31)
dP €1 and
— ) =T lid-liquid). 8.32 v
<dT)1z T(" — ) (solid-liquid) (8.32) -~
va’
The latent heats in these expressions are positive, and the slopes are all posi- sw
tive for substances that expand on melting. A notable exception is water, 91+
which contracts when ice melts into liquid; for this case (dP/dT ), <O0. the
The Clausius-Clapeyron equation, combined with the appropriate equa- tot
tions of state, can in principle yield equations for the phase transformation ¢
l’?

curves. A simple example is the vaporization curve describing, say, the conver- -
sion of liquid water to steam. Here »" >> v" (see Chapter 2), and so

(‘_if_) ~ __céi_ Th
aTr 7 T’U’”'

If we treat the vapor as an ideal gas,

o BT, n
P te
be
so that
dp (P
dT RTY
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