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|

3 Student’s initials

3

4 )

5 # problems handed in:
6

; Proctor’s initials

9

10

INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE

COLLATED AND GRADED BY THE ID NUMBER ABOVE.

Use at least one separate preprinted answer sheet for each problem. Write on only one
side of each answer sheet.
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answer sheet.

Write the problem number in the appropriate box of each preprinted answer sheet. If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 of 3).

Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all eight problems that you are handing in.

Hand in a total of eight problems. A passing distribution will normally include at least
three passed problems from problems 1-5 (Mechanics) and three problems from problems
6-10 (Electricity and Magnctism). DO NOT HAND IN MORE THAN EIGHT
PROBLEMS.

YOU MUST SHOW ALL YOUR WORK.




[I-1] [10]

Consider a projectile of mass m fired vertically upward in a constant gravitational ficld g. The
direction of the gravitational ficld is downward. The initial velocity of the projectile is v(0)=v,.
Calculate the time 1, required for the projectile to reach maximum height for the case of

(a) zcro resisting force (£, =0), and

(b) a resisting force proportional to the velocity of the projectile (F. = ~kmv).

[1-2]  [10]

Consider a simple plane pendulum consisting of a mass m attached to a string of length / (the
mass of the string is negligible). Afier the pendulum is sct into motion the Iength of the string is
di . . .
shortencd at a constant rate i —a = const.. The suspension point remains fixed.
t

(a) Find the Lagrangian L of the pendulum.
(b) Find Lagrange’s cquation of motion for the pendulum.




[ I-3 ' [63292]

Here you will study a disk with moment of inertia / and radius r , Totating on a frictionless pivot
about its center of mass. Attached to it by a massless string of length /is a mass m, forming a
pendulum that swings under the influence of gravitational acceleration g - See the figure below.

(a) Set up one torque equation for the disk, and two component force equations for the
pendulum. Eliminate the tension in the string to obtain two coupled equations of motion.
These should be expressed in terms of the two angles $,¢, and their time derivatives, in
addition to I, m,r,l, g .

(b) Make a smalil angles 9,9 << 1 approximation to linearize the two coupled differential
equations. That is, treat 9,¢, and their time derivatives as small and keep only the linear

order terms in power series expansions.
(¢) Determine the two normal mode frequencies of the system in this linear approximation.
Express these in terms of the constants of the system I,m,r,l, g .




|14 |10]

Imagine a radial shaft connecting the center of the Earth with its surface. A small object is shot
radially outwards from the center of the Earth through this shaft. What is the minimum required
initial velocity v, so that it reaches a distance 2R from the center of the Earth?

Assume that the Earth’s mass is distributed homogencously. The Earth’s mass is M and its
radius isR. The gravitational constant is G. In solving the problem, consider only the
gravitational cffects due to Earth (i.c., neglect the Earth’s rotation, friction, air resistance, ctc.).

[I-5] (10}

When cosmic rays cnter the carth, muons decay according to the radioactive dccay
law, N = N, exp(—0.693t/t,/2), where Np and N are number of muons at time t=0 and t,

respectively, and ti; is the half-life. Let’s assume that we mount a detector on top of a 2,000m
mountain and count the number of muons traveling at a speed of v=0.98¢. Over a period of time,
we count 1,000 muons. The half-life of muons is known to be 1.52x10 in their own rest
frame. We move our detector to sea level and measure the number of muons (having v=0.98¢)
detected during an cqual period of time. What is the expected number of muons to be measured?



[1-6]  182]

An uncharged metal sphere of radius R is placed in an otherwise uniform clectric ficldE=Fz.

The ficld polarizes the sphere, such that it pushes positive charges to the “northern” surface of
the sphere, lcaving a negative charges on the “southern” surface (see the figure below). This
induced charge, in turn, distorts the ficld in the neighborhood of the sphere.

(a) Find the potential in the region outside the sphere. (Note that this problem has an
azimuthal symmetry in the spherical coordinate.)
(b) Also, explain the physical meaning of cach term in the solution.

<Y




7] 142,22

(a) Write down all four Maxwell’s cquations for metallic media. Use Ohm's law to cxpress the

—

current density: J = 0 E | where o is the conductivity of the metal.

(b) From Maxwell’s cquations, obtain the modified wave cquation for £ (Hint: Apply the curl
to the cquation that describes Faraday’s law.)

(c) Use the plane wave solution E(x,£) = Eve"™ ™™ to deduce the dispersion relationship of EM
wave (i.c. wversus k). Here, £ is the propagating EM wave number.

(d) In a metallic media, k can be a complex number and is given by: k(w,o) =k, +ik,. Derive
the expression for &, and £, .

[1-8]  [10]

Consider a conducting rod of mass m on a tilted pair of rails in the presence of gravity g and a
constant and homogencous vertical magnetic ficld B (sce skctch below). The angle of
inclination is @ . The distance between the rails is /. The rails are connected with an inductance
L. The resistance of the rod and the rails and the friction between the rod and the rails are
negligible. Initially the rod is at rest and there is no current in the loop (v(0)=0, /(0)=0).
Describe the motion of the rod, i.c., obtain v{t).




[1-9] (10]

Consider a center-fed, lincar antcnna whose length [ is small comparcd to the radiated
wavelength L. The antenna is assumed to be oricnted along the z axis, cxtending from z = —d/2
to z=d/2 with a narrow gap at the center for the purpose of cxcitation. The current is in the
same dircction in cach half of the antcnna, having a value /, at the gap and falling approximately
lincarly to zero at the ends:

2 I:l

I(z,t) = I“( ——;—]cxp(— iwt)

(a) Calculate the linear charge p (charge per unit length) density in cach arm of the antenna.
(b) Calculate the dipole moment p of the antenna,

(¢) Calculate the angular distribution dP/dQ of the radiated power.

(d) Calculate the total power P radiated by the antenna.

[1-10] [6,4]
(a) Write the relativistic equations of motion for a particle of charge ¢ and mass m in an
clectromagnetic field. Consider these equations for the special case of motion in the x-direction

only, in a Lorentz frame that has a constant clectric field £ pointing in the positive x-direction.

(b) Show that a particular solution of the equations of motion is given by

2
x =€ cosh(-q—EJ and ¢= ﬁC—sinh(—qE—z-) ,
qE mc qE mc

and show explicitly that the parameter z used to describe the world-line of the charge g in the
above equations is the proper time along this world-line.



Sollabons P@HZI‘

-1
a) Zeroresisting force (F = 0):

The equation of motion for the vertical motion is:

F—ma“miv~—m (nH
dt g
Integration of (1) yields
v=-—gtt v, (2)

where v, is the initial velocity of the projectile and t = 0 is the initial time.

The time ¢, required for the projectile to reach its maximum height is obtained from (2.
Since t, corresponds to the point of zero velocity,

t)=0=v,-qt,, 3)
we obtain
f==" 4)
g

b)  Resisting force proportional to the velocity (F, = —km UE

The equation of motion for this case is:
av
F=m—=-mg-kmv 5
il ©)

where —kmv is a downward force for t< ¢, and is an upward force for t> ¢ . Integrating,
we obtain “

V(t):__]i_f_ kvok"' ge—xn (6)
For t=t , v(t) = 0, then from (6),
= (gt
v, k( ¢ 1) 7)

which can be rewritten as

Kt :m[uﬁ} (8).
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ldentification Number:

STUDENT: insert a check mark in the left boxes to designate the problem numbers that
you are handing in for grading.

PROCTOR: check off the right hand boxes corresponding to the problems received from
cach student. Initial in the right hand box.
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'; # problems handed in:
6
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INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

[. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE
COLLATED AND GRADED BY THE ID NUMBER ABOVE.

2. Use at least one separate preprinted answer sheet for each problem. Write on only one
side of each answer sheet. t

3. Write your jdentification number listed above, in the appropriate box on the preprinted
sheets.

4. Write the problem number in the appropriate box of each preprinted answer sheet. [If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 of 3).

5. Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all eight problems that you are handing in.

6. Hand in a total of eight problems. A passing distribution will normally include at least
four passed problems from problems 1-6 (Quantum Physics) and two problems from
problecms 7-10 (Thermodynamics and Statistical Mechanics). DO NOT HAND IN
MORE THAN EIGHT PROBLEMS.

7. YOU MUST SHOW ALL YOUR WORK.




l -1 l '593921

The cigentunctions for a potential of the form

o0 x<(
Vix)=4{0 0<x<a
0 x>a

are given by

U,(x)= Esin(ﬁgj .

[2] a

Suppose a particle in this potential has an initial normalized wave function of the form

w(x,0) = A[sin(—@—ﬂ .
a

(a) What is the form of w(x,1)?
(Hint-1: expand the initial wavetunction into a linear combination of U,(x).)

4 —e i
)

(Hint-2: You may use the expression sin 8 = T
1

(b) Calculate 4 without doing the integral f dfsin® @ [ie., by using (x,0) expressed as a
linear combination of the eigenfunctions U (O]

(¢) What is the probability that an energy measurement yields E,, where E, = n;rzb )
ma




| 11-2 ] 14,2,4]
A hydrogen atom is placed in a uniform external electric £ ,=Ez.

(a) Compute the first-order shift in energy levels for the n =2 states. Here and in all other parts
below, express your answers in terms of the Bohr radius a, the electronic charge eand the
external field strength £ . Utilize the following unperturbed wavefunction forms:

1 372 r , l 32 F /24
RZO:____av- l_____er.bu’ R”:_____a Z_er..u,

V2 2a b2 a

1 3 3 4
Yoo =—=, Y, =,]—cos(8) , Y, =¥J——sin9e"“’.
(3.3 ‘\/;1'; 10 472_ ( ) 1.t} 8]2' ( )

(b) Give the first-order energy eigenstates that result from the mixing in part (a).
(¢) Suppose the system is prepared initially in they,, state (n=2, /=0, m = 0) and an electric
field is switched on instantaneously at ¢ = 0:

0 t<0

E(t) =
) {Eoé 120

Using the results of parts (a) and (b), compute the probability as a function of time for the atom
to be observed with orbital angular momentum L =0.

[1-3] 13,4,3]

Two spin-1/2 particles are separated by a distance vector @ = az (a=|a|)and interact through
the magnetic dipole energy

H = (#, 3/‘2) __3(/‘1 -a)(u, -a)

5 3
a a

where u; is the magnetic moment of spinj . The system of two spins consists of eigenstates of

total spin S° and total S, .
(a) Write the Hamiltonian in terms of the spin operators.
(b) Write the Hamiltonian in terms of % and S .
(c) Give the eigenvalues for all states.



[ H-4] 13,4,3]

In this problem you will model elastic scattering from a cubic lattice of scatterers. The potential
cnergy is:
M M

V=23 > > d(x-an)

mE=M 0y <=M ny=-N

where n=(n,,n,.n,). Here a is the lattice spacing, an describe the locations of the lattice
sites; there are 2M +1 lattice sites in the both the & and y directions (corresponding to n, and
n, respectively), and there are 2N +lsites in the 7 direction, corresponding to n,. The
incoming plane wave has wave vector k = k3 .

(a) Determine the scattering amplitude S(k',k) in the (first order) Born approximation,

written as a sum over the lattice sites n. Here k' is the wave vector of the scattered
particle.
(b) Now perform the sum exactly. Use the geometric progression:
\] N
- o7~
2/ = , z#1.
=

z—1

J

(c) Let & be the scattering angle. The 2 component of the vector ¢=k—4k' is
g, = 2ksin’(6/2). Using the result of part (b), show that there are special values of q,

for which the scattering amplitude J(k',k) vanishes. Determine the corresponding
values of @ for which f(k’, k) vanishes.



(5]  [10)

Estimate the ground state energy of a two electron atom with nuclear charge Z, using the
Heisenberg Uncertainty Relations. Evaluate the ground state energy for Li* from your
calculations (Li" has 3 protons and 2 electrons).

The ground state energy of an ion with two electrons and nuclear charge Z should be expressed

as a function of Z and include the Rydberg constant. The Rydberg constant Ry is given by
4

Ry = g ez =13.6eV, where u is the reduced mass, e is the electron charge, and # is Planck’s
constant.
[ -6 ] [10]

¥(x, t) is a solution of the time-dependent Schroedinger equation
oy h?

ih—= =

—— AW+ V(X .
2 P14 (X

Show that p(%,t) = |y /(x, t)]2 and j(¥,1) = é—h— (I,u€7 wE-p*v y/) satisfy the continuity equation
m

P 5.5 =0.
ot



[I7] [10]

When a particular one-component material is in phase I, it obeys the cquation of state
Pp=a+bpu
where #=1/T, pand u are the pressure and chemical potential, respectively, and aand b are
positive functions of . When the material is in phase 11,
Bp=c+d(puy,
where ¢ and d are positive functions of 8, J > b ,and ¢ < a. Determine the density change that

occurs when the material undergoes a phase transformation from phase I to phase II. What is the
pressure at which the transition occurs?

L8] [2,44]

The Helmbholtz free energy of a dilute plasma gas consisting of N electrons confined to a
volume V' at temperature 7' is given by

L, \1/2
F(T,V,N):F’de"’(T,V,N)—g-NeZ(4mve J ,

Vk,T
where e is the electron charge, &, is Boltzmann’s constant, and F el (T VN ) is the Helmholtz

free energy of a mono-atomic ideal gas.
(a) Obtain the equation of state of the above plasma gas.
(b) Obtain the internal energy of the system E(T,V,N).

(¢) Obtain the constant-volume heat capacity C,.

Note: your answers should be fully explicit in terms of the variables T » ¥V ,and N . To that end,
you are expected to remember and use the equation of state, internal energy, heat capacity of the
ideal gas in obtaining your final results.



[H-9] [4,4,2]

A cubic volume ¥ = L' of an ideal monoatomic gas is at equilibrium in a uniform gravitational
field g = —¢Z. Each atom has mass m . Take the bottom of the container to be z =0 and the top
tobe z=1L.

(a) Determine the classical partition function for the gas.
(b) Determine the equation of state.
(¢) Show that this reduces to the usual expression in the g — 0 limit.

[1-10]  [3,7)

Consider a model system with single-particle energy levels ¢, 2¢,3¢,4¢,.... The system is
completely isolated from the rest of the universe; there are N =3 electrons in the system, and
the total energy of the system is E = 6. The only degeneracy of the energy levels is associated
with the spins of the particles.
(a) What is the entropy of the system subject to the above constraints?
(b) What is the expectation value of the number of electrons in each of the single-particle
cnergy levels?
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