Physics PhD Qualifying Examination
Part I - Monday, January 14, 2013

Name:

(please print)
Identification Number:

STUDENT: Designate the problem numbers that you are handing in for grading in the
appropriate left hand boxes below. Initial the right hand box.

PROCTOR: Check off the right hand boxes corresponding to the problems received from
each student. Initial in the right hand box.

é Student’s initials

3

g # problems handed in:
6

; Proctor’s initials

9

10

INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

1. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE
COLLATED AND GRADED BY THE ID NUMBER ABOVE.

2. Use at least one separate preprinted answer sheet for each problem. Write on only one
side of each answer sheet.

3. Write your identification number listed above, in the appropriate box on each preprinted
answer sheet.

4. Write the problem number in the appropriate box of each preprinted answer sheet. If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 of 3).

5. Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all eight problems that you are handing in.

6. A passing distribution for the individual components will normally include at least three
passed problems (from problems 1-5) for Mechanics and three problems (from problems
6-10) for Electricity and Magnetism.

7. YOU MUST SHOW ALL YOUR WORK.




[1-1] [10]

It is well known that if you drill a small tunnel through the solid non-rotating Earth of uniform
density p from Rensselaer Polytechnic Institute through the Earth’s center to its antipode
location on the other side, and drop a small stone into the hole, it will be seen at the antipode

location after a time 77 = — , where ®, is a constant. (Neglect friction, air resistance, melting
@y
temperatures, etc.) The gravitational constant is G .

(a) Obtain the equation of motion for the small stone inside the Earth.

(b) Express @, interms of p and G .

(c) Now instead of dropping the stone, you throw it into the hole with an initial velocity vo. How
big should vy be, so that it now appears at the antipode location after a time 75 = 71/2 ? Your

answer should be given in terms of @, and R, the radius of the Earth

(2] [10]

A block of mass m is held motionless on a frictionless plane of mass M and an angle of
inclination &. The plane rests on a frictionless horizontal surface. The block is released.

(a) Find the Lagrangian L of the mass and the plane and derive Lagrange’s equations of motion.
(b) What is the horizontal acceleration of the plane?




[I-3] [10]
Two masses of mass m are connected via springs of spring constant %, as shown:

. k o
%g%%ﬁi%% | ﬁ%
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Determine the frequencies and eigenvectors associated with each of the normal modes of the system. (The
masses are restricted to move horizontally only, ignore gravity.)

[1-4] [10]

A billiard ball (solid uniform sphere with radius R) at rest is hit by the cue at a height 4 above
the center of the ball. Assume that during this short impulse, the force exerted by the cue on the
billiard ball is much greater than all other forces.

What should /4 be so that the ball rolls without sliding right from the start? Your answer must be
expressed in terms of R, and as always, you must show all your work to get credit. (The flat
surface on which the ball rolls is horizontal, and the cue is parallel to this surface. The moment

of inertia of a uniform solid sphere with mass M and radius R is [ = zMR2 )

[I-5] [10]

Consider the relativistic motion of a particle with (rest) mass 7 in one (spatial) dimension in the
presence of a time-dependent force F(t)= F,e™'", where F, >0and ¢ >0 are constants. The
initial velocity of the particle is v(0) = 0. The speed of light is c.

(a) Starting from the relativistic equation of motion, find v(¢), the velocity of the particle as a
function of time.

(b) Find the limit (or terminal) velocity lim,_,_ v(¥).



[I-6]  [10]

Two spherical cavities of radii @ and b are hollowed out from the interior of a (neutral)
conducting sphere of radius R. At the center of each cavity a point charge is placed — call these
charges g, and g5.

(a) Find the surface charges o,, o5 and og.
[ oy is the surface charge on the surface of cavity a, g, is the surface charge on the surface
of cavity b, oz and is the surface charge on the conducting sphere. ]

(b) What is the electric field outside the conducting sphere?

(c) What is the electric field inside each cavity?

(d) What is the force on g, and g5?

(e) Which of these answers [(a) — (d)] would change if a third charge, ¢, were brought near
the conductor?

[L-7]  [64]

A parallel plate capacitor consists of two circular plates of area 4 (radius a) with vacuum
between them. It is connected to a battery of constant emf £. The plates are then slowly
oscillated so that they remain parallel but the separation d between them is varied as

d= do + d1 Sin( (l)t)

(a) Find the magnetic field H between the plates produced by the displacement current, as a
function of the perpendicular radial distance r from the axis connecting the centers of
the two plates.

(b) Similarly, find H if the capacitor is first disconnected from the battery and then the
plates are oscillated in the same manner.



[I-8]  [64]

A long straight wire of radius b carries a current I in response to a voltage V between the ends of
the wire.

(a) Calculate the Poynting vector § for this DC voltage inside the wire.

(b) Obtain the energy flux per unit length at the surface of the wire. Compare this result with the
Joule heating of the wire and comment on the physical significance. Is the Joule heating (/E)
equal to the total incoming § flux? Is this in agreement with Poyntings theorem? State
Poynting’s theorem.

[1-9] [10]

Show that in the collision of two nonrelativistic, spinless, identical particles, the emission of
electric and magnetic dipole radiation does not occur, according to classical radiation theory.

[I-10]  [10]

An infinitely long perfectly conducting straight wire of radius » carries a constant current / and
charge density zero as seen by a fixed observer A. The current is due to an electron stream of
uniform density moving with high (relativistic) velocity U. A second observer B travels parallel
to the wire with high (relativistic) velocity v. As seen by the observer B:

(a) What is the electromagnetic field?

(b) What is the charge density in the wire implied by this field?

(c) With what velocities do the electron and ion streams move?



I-1 Solution

Let r be the distance of the stone, of mass m, from the center of the

‘earth. The gravitational force on it is F' = Gﬂ;’?’—ﬂ = —wimr, where
wp = 4—%‘3’3, p being the density of the uniform earth. The equation of

the motion of the stone is then

F=—wir .

Thus the stone executes simple harmonic motion with a period T = o
Then if the stone starts from rest at Buffalo, it will reach Olaffub a.fter a
™

t].[IIETl— g =

Wo

The solution of the equation of motion is
r = Acos(wt + ¢) .

Suppose now the stone starts at » = R with initial velocuty 7= —vg. We

have
R = Acos, —vp = —Awpsing ,
giving
gf:zarctan(;w—n), A= R2+(:}—Z)2.
To reach Olaffub at ¢ 22’- 35 We Tequire
Ug 2 T Ug : .
—R=\|R%+ (U-’_o) cos (§+ ga) =—/R?+ (W_o) sing .

As sin® ¢ + cos? ¢ = 1, we have

2 2 |

” +R(v0)2 + - +R(.v_o)2‘ =1,

Wo ' w

giving

UQ=RMQ.



y

1-2 Solution:

@ . #2 Solutions

- Movmg plane

Let x; be the horizontal coordinate of the ?lane (with positive x; to the left), and let x;
be the horizontal coordinate of the block (with positive x; to the right); see Fig. 6.37.
The relative horizontal distance between the plane and the l_)lock is x; + x2, so the
beight fallen by the block is (x; + ;) tan 8. The Lagrangian is therefore

L= %Mif + -lz-m(x% + (i + %a)? tan29) +mg(x +x2) tan 4, 6.99)

The equations of motion obtained from varying x; and x; are
M3y + m(¥; + %)) tan?0 = mg tan @,

miy + m(%y + %;) tan®6 = mg tan §.

(6.100)

Note that the difference of these two equations immediately yields conservation of
momentum, MX) ~m¥; = 0 == (d/dt}(M*; ~ mx3) = 0. Equations (6 100) are two
linear equations in the two unknowns, %; and ¥;, so we can solve for ¥. Aftera httle

simplification, we arrive at

_ mgsind cosf
M +msin%g

For some limiting cases, see the remarks in the solution to Problem 3.8.

(6.101)

———n
e X2
Xy M
Fig. 6.37



-3 Normal Modes

Two masses of mass m are connected via springs of spring constant k, as shown:

g 1T ﬁ%

! &

Solution:

| l’-—ﬁ ‘\——9
bX, X
From Hooke’s Law,
Fi = —kx{ + k(xy — x1) = myy, Fy = —kx; + k(xg — x5) = mx),
X = —w?x,, A =—wixy,
Solve for w,
_H_ 2 K
m m -0
k 2k )
— —_———w
m m
2k 2)? (& 2
.&_ Z_if_’ W= &__Fic.’ W = ’w_l_—_- &
m m m m m
_%k K
eigenvectors: o (‘;1) = —w? (‘;) - —%A +Eip=-w?4 , Ea-Zp=_u2B
m  om
w_=\/z: ~EarEip=—Xy 4= |o_=
m m m m

\/i'i(i) (symmetric mode)
~Ep4Lp=_%y4 4=p
m m m

‘/i_z. (_1) (antisymmetric mode)




1-4[10] - 4 mvﬁ
’ a'f

A billiard ball (solid uniform sphere with radius R ) is hit by the cue at a height 4 above
the center of the ball. Assume that during this short impulse, the force exerted by the cue
on the bﬂhard ball is much greater than all other forces.

What should h be so that the ball rolls without sliding right from the start? Your answer
must bé exptessed in terms of R, and as always, you must sow all your work to get
credit. (The flat surface on which the ball rolls is horizontal, and the cue is parallel to ﬂns
surface. The moment of inertia of a uniform solid sphere with mass M and radius # is

JR—
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I-5 [10]
Consider 'fﬁ"é; relativistic motion of a particle with (rest) mass m in one (c;}peu ial)
dimeénsion i m the presence of a timé-dependent foice F(t)=F, e™'" where F and 7 are

constants. TH initial velocity of the particle is v(0) == 0. The speed of light is ¢.

(a) Startmg h om the relativistic equation of motion, find v(z), the velocity of the par ticle

asa functlon of time.

(b) Find the ﬁfnit (or terminal) velocity lim,  v{¢).
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I-6_Solution:

Electricity and Magnetism
I-6 Electrostatics or Boundary Value

2 | P
(@) oa=-7"0 b |7 = R

(b) | Boyr = 1 Gt £, | where r = vector from center of large sphere,
0

1 ¢, 1 o, h . .
= e 28 I ere r, (ry) is the vector from center of cavity a (b).
(¢)| B pr—— fa, B e ;‘?Th w a {T8) y a (b)

(d)

{e) o changes (but not o, or 63); Eoutside changes (but not E, or Ey); force on ¢, and g, still zero.
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I-8. Solution

a) Let us calculate the flux of the Poynting vector. Introduce cylindrical
coordinates with unit vectors e,, €g, and Z. Current flows along the wire
in the z direction and the electric field E = EZ. Using one of Maxwell’s
equations in vacuum, the fact that conditions are stationary, and Stokes’

theorem,

Am 1 oE
VxB=—J+4+-—
% +c ot

o c
4 |
/VxB-dA:]{B-dI:——/J-dA
A . c c Ja

where J is the current density and A is the surface. At any given radius

r, Bg is constant, so we have -

4 ' 2
2nrB = -CE Jrr? B = %T Jreg

[4

c c 27 R 1
S:EEXB:E?JTE(zxeG):—“iJTEeP

Using the relation between: current density and total current J = I/ (mb?):

IEr IE
Sb)=——
. onb? P ) =—5mp°
b) The Poynting flux per unit length is then S - 27b = —IE. So the flux
enters the wire, and we see that the dissipated power per unit length IE is
equal to the total incoming S-flux, ifi agreement with Poynting’s theorem:

Ou

S=-

—=-J-E-V-8
ot
where u is the energy density. Under stationary conditions such as ours
ou
Z -0
ot

and we have

/J-Edg‘m\:-/ V-SdV_—-—/S-dA:IE
174 A% A



I-9. Solution

Electric-dipole radiation is proportional to |dD/dt[?, where D is the
electric dipole moment. But D = e(r; + r;), and this has zero time deriva-
tive because it is proportional to the center-of-mass vector. The magnetic
moment is

2 e -
E (I‘i X Vi) == ——(—;L.

Mm=ds (0 X T) = 2
2c i=1 ¢ ¢ 2¢ iz 2m

Thus M is proportional to the angular momentum of the system, which

"is constant. Magnetic-dipole radiation is proportional to |dM/dt[?, and o)

is equal to zero.



I-10 solution:

(a) Let X and X’ be the rest frames of observers A and B respectively, the common x-axis being
along the axis of the conducting wire, which is fixed in Z.

o

InE: p=0, j=n—;2-x,

-~

yielding fields, E = 0, B(r) = £ 4.

2nr

To find fields in ¥’, perform Lorentz transformation.

Ej| =E =0, By=5=0,

E' = E-’L = y(E-L +v X B—-I—) = _.va,",‘, — __yvpol £

2nr

(b) Let the linear charge density of the wire in £’ be p’, then the electric field produced by p’ is
given by Gauss’ law:

i
2nrE’ = p—,
€o
1
p' = 2nre, (— V:%) N —Z:TI, where we have used pyg, = 1/c?
() InZ the velocity of the electron stream is v, = —UZ, while the ions are stationary, i.e., v; = 0.

Using the Lorentz transformation of velocity we have in ¥’



Physics PhD Qualifying Examination
Part II - Tuesday, January 15, 2013

Name:

(please print)
Identification Number:;

STUDENT: insert a check mark in the left boxes to designate the problem numbers that
you are handing in for grading.

PROCTOR: check off the right hand boxes corresponding to the problems received from
each student. Initial in the right hand box.

; Student’s initials

3

;1 # problems handed in:
6

; Proctor’s initials

9

10

INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

1. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE
COLLATED AND GRADED BY THE ID NUMBER ABOVE.

2. Use at least one separate preprinted answer sheet for each problem. Write on only one
side of each answer sheet.

3. Write your identification number listed above, in the appropriate box on the preprinted
sheets.

4. Write the problem number in the appropriate box of each preprinted answer sheet. If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 of 3).

5. Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all eight problems that you are handing in.

6. A passing distribution for the individual components will normally include at least four
passed problems (from problems 1-6) for Quantum Physics and two problems (from
problems 7-10) for Thermodynamics and Statistical Mechanics.

7. YOU MUST SHOW ALL YOUR WORK.




[TI-1]  [10]

Using the annihilation operator @ = |——= (& + — , and creation operator at = |— (& —
Y p
g 2h mw p 2h

;f; p), determine the normalized wavefunctions and energies of the ground state and first excited

state of the simple harmonic oscillator, with potential V (x) = %ma)zxz.

[T1-2]  [10]

Consider a particle of mass m in a one-dimensional box with infinite high walls at x=0 and x=L.

(a) Find the eigenenergies E, and normalized eigenfunctions ¢, for the particle in the box.

(b) Calculate the first order correction to E,” for the particle due to the following
2 2.2

perturbation H'=10" El%. Here, E, =ﬁis a constant.

m

[II-3]  [10]

A particle in a central field potential has an orbital angular momentum [ = 24 and spin s = A.
Find the energy levels and degeneracies associated with a spin-orbit interaction term of the form

Hgo = AL - §, where 4 is a constant.



[T1-4]  [10]

A particle of mass m is scattered by the Yukawa potential:

Viry=V, SXp(=pT) ,  with g=const.
ur

(a) Calculate the scattering amplitude in the first Born approximation
(b) Calculate the differential scattering cross section.
(c¢) Calculate the total scattering cross section.

[II-§ ] [10]

Compute the cross section for hard sphere scattering in terms of a partial wave expansion, as a
function of the wave number k. The potential is infinite for » < a and zero forr > a.
Hint: the wavefunction has a partial wave expansion

W(r,0) = A T2 'L + 1)jy(kr) + \[%Iclhg“(kr)lpl(cos 9)

and your final answer will be in terms of the spherical Bessel function j;(kr) and spherical
Hankel function hfl) (kr) evaluated at r = a. Also note that the outgoing scattered spherical
wave is conveyed by the asymptotic behavior hgl)(kr) ~ (=Dt [kr at large 7.

[I1-6]  [10]

A two-level system has eigenstates a and b with energies E, and E;, where we assume Ej, > E,,.
The system is perturbed by a time dependent potential H' with matrix elements

H'gp(6) = H'po() = Ae™F,
with A a small parameter. (Diagonal matrix elements of H' vanish.)

If the system starts in state a in the infinite past, at first order in time dependent perturbation
theory, what is the probability that it will be in state b in the infinite future?



[1I-7]  [10]

Monatomic ideal gas consisting of N atoms is confined to a container of fixed volume. At the
end of a process, during which heat is slowly transferred to the gas, we find that the pressure of

the gas is tripled.

What is the change of the entropy of the gas? You must express your answer in terms of N and
k.

[TI-8]  [10]

The Helmholtz free energy of a gas is given by F(T,V)= —%T ‘V, where a is a positive

constant. Determine the relationship between P (pressure) and V (volume) for the quasi-static
(reversible) adiabatic process.



[1I-9 ] 12,3,2,3]

In a static approximation, the energy of a particle depends only on the position, E = E(x). Here
we will take the particle to be confined to one dimension, and constrained to the positive real
axis, 0 < x < c0. We will also assume that the energy is given by E = Ax™. The classical

E(x)
partition function in this case is given by Z = [dx e *T. An integral that you will need to

know is fo dx e~ O™ = ;;F(l/m), where T'(z) is Euler’s gamma function. For a single
particle,

(a) Compute the partition function.
(b) Find the Helmbholtz free energy.
(¢) Find the entropy.

2
Now suppose we include momentum in the energy, E = L Ax™, where u is the mass of the
pPp gy ™

particle.
(d) Compute the entropy in this case.

dx dp E@x)

Hint: The partition function becomes Z = f ~kT when momentum is included.

[T-10]  [10]

If a magnetic field H, is applied to a gas of uncharged particles having spin % and the magnetic

moment u, and obeying Fermi-Dirac statistics, the lining up of the spins produces a magnetic
moment/volume. Set up the general expressions for the magnetic moment/volume at arbitrary
temperature 7T and field AH.

Then for low enough temperature, determine the magnetic susceptibility of the gas in the limit
of zero magnetic field, correct to terms of order 7°.

Note: You may want to use the following integral,
n* kT,

i \/_ _2 3/2
!eXp[(E &)/ kT1+1 35 T+ (?) -1




-1 solution:

The annihilation operator acting on the ground state returns zero,

i & 6
al0) = (52 (x + 557 35) Yo = 0,

h 0
xY¥, = —%a—x%

i
[-Txdx = [gd¥, —F—x?=In(¥)+C
Y, = Ae-mmxz/zh

The first excited state is then found from, |1) = a'|0).



1I-2 solutions
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-3 solution:

Choose {H,]?,],,1?,5%} as a complete set of mechanical variables. The wave function
associated with angle and spin is ®jm;1s, for which:

]2¢jmjls = th(]- + 1)¢jmjls L2¢jmjls = hzl(l + 1)¢jmjls;
52¢jm,-zs = h%s(s + Djmjis and J2®jmjis = WM s.
1
H50=aL-S=§A(]2—L2—SZ)

Eso =T A[G +1) = 10+ 1) = s(s + D], 521, =2

hZ

24R%, j =3 7,j=3
Eqo={ —AR%, j=2, degeneracy =2(j+1) =45, j =2
—3Ah2,j=1 3,j=1
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11-7 {10]

Monatomlc* ideal gas consisting of A atoms is ¢onfined to a container of fixed volume.
At the end 01 & Process, during which heat is slowly transferred to the gas, we find that
the pressure 6f the gas is tripled.

What i§ the tHange of the entropy of the gas? You must express your answer i terms of
N and k.
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m8[i0]
The Helmhdltz free energy of a gas is given by F(T,F) = —-~T4 V , where g is a positive

constait. Determme the relat1onsh1p between P (pressure) and V (volumig) for the guasi-
static (reversible) adzabatzc process.
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II-10.

Solution  The energy of a particle whose magnetic moment is parallel (anti-
parallel) to H, is given by

_p :
U;_.‘?.m:':'wﬂ'

Since the energy levels of the system are populated according to the dis-
tribution function

1
0= pw=gpr+1

and the density of levels is given by (47 V/A*) p°dp, the total number of
particles NV is given by ,

=2V [ app1f () + 7] M -
and the magnetization/volume is
Y _ 2k { ap iU — SO @’

Equation (1) may be solved for £ in terms of N, 7', and H, and & may then

be substituted in Eq. (2) to determine M|V as a function of N, 7', and H.
Upon defining a new variable of integration E = »*/2m and using the

low-temperature expansion formula given, we find that Eq. (2) becomes

R e 38 ==

—E—pp |14+ 5 (21 "T;H)}}

which, after expanding in powers of H and keeping only the leading term,

becomes

(%) 871'#2%23”7'3 mflﬂﬂ{ 2;(%1)2 R } + terms of order H*.

Eqﬁation (1) (for H = 0) becomes
_ N _ 16x sms,rz{ W_”(ﬂ‘)2 }
n_vh“ghs(zm)g 1+8 E +
Solving for £, one obtains

E_g"{ 12(?) T }

where &, is the Fermi energy at 7 = 0°K, and £ = 3k’n /1(:‘;7:(2?1?,3)”2
The susceptibility then becomes

=t G-+ )



