Physics PhD Qualifying Examination
Part | — Wednesday, August 26, 2015

Name:

(please print)
Identification Number:

STUDENT: Designate the problem numbers that you are handing in for grading in the
appropriate left hand boxes below. Initial the right hand box.

PROCTOR: Check off the right hand boxes corresponding to the problems received from
each student. Initial in the right hand box.

1

5 Student’s initials

3

4 .

5 # problems handed in:
6

; Proctor’s initials

9

10

INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

1. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE
COLLATED AND GRADED BY THE ID NUMBER ABOVE.

2. Use at least one separate preprinted answer sheet for each problem. Write on only one
side of each answer sheet.

3. Write your identification number listed above, in the appropriate box on each preprinted
answer sheet.

4. Write the problem number in the appropriate box of each preprinted answer sheet. If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 of 3).

5. Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all problems that you are handing in.

6. There is no limit on the number of problems you can turn in.

7. A passing distribution for the individual components will normally include at least three
passed problems (from problems 1-5) for Mechanics and three problems (from problems
6-10) for Electricity and Magnetism.

8. YOU MUST SHOW ALL YOUR WORK.




-1 [10]

A particle moves in a medium under the influence of a force,

F =-mk(v* +2av +a?),
where k are a constants. There are no other forces present. The particle is initially at the origin
(x=0) and is given an initial velocity of vo. Treating the problem classically (not relativistically),

(a) What is the distance the particle travels before coming to a stop (i.e. v=0)? (Note that your
answer should be given in terms of vy, a, and k.)
(b) What is the maximum possible distance it can ever travel before coming to a stop?

12 [10]

Consider a system consisting of a massless spring with spring constant k and a wheel with
uniform mass M, moment of inertia | and radius R. The top of the wheel is connected to the end
of the spring as illustrated in the Figure. The equilibrium length of the spring is at x=0. The
wheel rolls without slipping on the horizontal plane when set in motion by the spring.

(a) Determine the kinetic energy T of the system.

(b) Determine the potential energy U of the system.

(c) Write down the equation describing the constraint on the motion of the wheel.
(d) Write down the Lagrangian L of the system.

(e) Derive Lagrange’s equation of motion.

(F) What is the frequency of oscillations of the wheel?




13 [352]

Consider the motion of a coplanar, double pendulum system with one single pendulum hanging
from another. The lengths of the massless strings, £, £, and the masses of the bobs, m,, m, are
different. Use the angle each string makes with the vertical as generalized coordinates, 9,, 9,.

(a) Determine the Lagrangian equations of motion for small oscillations.

(b) Determine the normal modes of oscillation of the system and their corresponding
frequencies. What are the frequencies for the special case of equal lengths and equal masses?

(c) Under what conditions will the system move as a single piece? Is this physically possible for
a double pendulum?

-4 [10]

What minimum force F, applied horizontally at the axel of the wheel, is necessary to raise the
wheel over a curb of height h? (See figure below.) The radius of the wheel is r and its total mass
is M. The gravitational acceleration is g. You must express your answer in terms of h, r, M, and

g.




15 [10]

In the laboratory reference frame, an observer “sees” simultaneous bright flashes (the light flashes arrive
at the observer at the same instant) from both the front and rear of a rocket of length L (as measured by

the observer) which is travelling at a relativistic velocity, v.

If the rocket was travelling directly toward the observer in the laboratory frame, as shown below:

rocket

\t observer
/

(a) Were the light pulses simultaneously emitted in the rocket frame?
(b) If not, which occurred first and what was the delay between emitted pulses?

If the rocket was travelling tangent to the observer in the laboratory frame, as shown below:

rocket

>

4( observer
/

(c) Were the light pulses simultaneously emitted in the rocket frame?
(d) If not, which occurred first and what was the delay between emitted pulses?



16 [10]

Determine the electric field inside and outside a sphere of radius R and dielectric constant e
placed in a uniform electric field of magnitude E, directed along the z-axis.

-7 [10]

(@) Write down Maxwell’s equations for free space where there are no current or charge
distributions.

(b) Derive wave equations for electric and magnetic fields from Maxwell’s equations.

c=w/k

and show that E, Band Kk are perpendicular to each other.

(d) Use the two curl equations in Maxwell’s equations to show the relationship between &, 1,
and speed-of-light in free space, c.



18 [10]

Consider two parallel loops of wire having a common axis as illustrated in the Figure. The
smaller loop with radius r is above the larger loop with radius R by a distance x>>R.
Consequently, the magnetic field B, due the current i in the larger loop, is nearly constant
throughout the smaller loop and equal to the value on the axis. Suppose that the distance x is
increasing at the constant rate dx/dt=v.

(a) Determine the magnetic flux across the area bounded by the smaller loop as a function of x.

(b) Calculate the electromotive force < in the smaller loop.
(c) Determine the direction of the induced current ii,q flowing in the smaller loop.

r

C®



1-9 [10]
A massive atom with an atomic polarizability a(w) is subjected to an electromagnetic field (the
atom being located at the origin),

E = Ejeltkx-otz

Find the asymptotic electric and magnetic fields radiated by the atom and calculate the energy
radiated per unit solid angle. State any approximations used in this calculation, and state when

(and why) they will break down as w is increased.

1-10  [5,5]

In the Compton effect, a y -ray photon of wavelength A strikes a free but initially stationary,

electron of mass m. The photon is scattered at an angle &, and its scattered wavelength is A
The electron recoils at an angle ¢ (see figure below).

(a) Write the relativistic equations for momentum and energy conservation.
(b) Find an expression for the change A- A in the photon wavelength for the special case
O=rnl2.
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I-4[10]

What minimum force F, applied horizontally at the axel of the wheel, is necessary to
raise the wheel over a curb of height #7 (See figure below.) The radius of the wheel is r

and its total mass is M. The gravitational acceleration is g. You must express your answer
in terms of b, r, M, and g.
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I-Ssolution:

{a) and (c) in neither case are the events simultaneous in the reference frame of the train.

{b) If the observer “sees” light from both the front and rear of the train simultaneously, then the
time delay between events as measured from the observeris 6t = L/c.
Performing a Lorentz transformation to arrive at §t’ in the train reference frame yields,

v
5t/ = (& vL) B (L vL) L (1 - E)
=Y c2/  \c 2 y“\/c?--vz

(d) If the observer “sees” light from both the front and rear, while the train is moving tangent to the
observer then both light pulses are viewed to be emitted simultaneously by the observer, so 6t = 0.
Lorentz transformation then vields,

_yvl v L

at’ =
i N P Ry




I-6 solution:

Let the origin be at the spherical center and take the direction of the original field E to define the polar
axis z. Let the electrostatic potential at a point inside the sphere be ®,, and the potential at a point
outside the sphere be @,. By symmetry we can write @, and &, as

b, = Z(Anr" + B, /™1 P, (cos8),

n=0
By = ) (Cur™ + Dy fr" YPy(cos6)
n=Q
Where P, are Legendre polynomials. The boundary conditions are as follows:

(1) &4 isfiniteatr = 0.

(2) @3 (r = o) = —Ercosf = —ErP;(cos6)
(3} & =Dy (atr =a), e EO%%

P {atr = a)

From conditions (1) and (2), we obtain
B,=0, Ci=—E, C,=0(n=+#1)

The from condition {3), we obtain

~EaPy(c056) + Yn =t P (c056) = Ty Ana® Py (cos),

anti

D
—€ (E,'P1 (cosB) + Z(n +1) -a—r-l-:_-l-EPn(cose)) = €, Z nd,a" 1B, (cosd)
n

n

In order to satisfy for all 8, the coefficients of B, (cos8) must be equal term-by-term for each n. This
gives,

4y = —EE =0 " ped, A =D =0(n=1
V7 g +2e’ Tt gp+ 2 & n=Dh=00=1)
vielding,
& = 3eE g
LT T r2e

€xg—€ (a 3)
=—|1- -] |E
b, (1 e T 2¢ (r) Trcosd






I-8

The angle ¢ between the current element i 43 and T is
90°, From the Biot-Savart lew, we know that the vector
dE for this element is at right angles to the plane formed
by { d¥ and ¥ and thus lies at right angles to T, as the fig-
ure shows,

Let us resolve dB into two components; one, d —1'3',,
along the axis of the loop and another, dH , , at right angles
1o the axis. Only d B, contributes to the total magnetic field
B at point 2. This follows because the components o, for
all current elements lie on the axis and add directly; how-
ever, the components 4B, point in different directions per-
pendicular to the axis, and the sum of all B for the com-
plete loop is zero, from symmetry. (A diametrically
opposite current element, indicated in Fig. 33-10, produces
the same d B, but 4B, in the opposite direction.) We can
therefore replace the vector integral over all 4B with an in-

- tegral over the z components only, and the magnitude of the
. field is given by

B= fda:. (33-14)

:  For the cumrent element in Fig. 33-10, the Biot—Savart
- law (Eq, 33-9) gives

dB=~£9—i~ ds sin 90° ‘

. LY r? (33-13)
' We also have
; dB, = dB cos a,
- which, combined with Eq, 33-15, gives
;' Mol CO5 x ds
dB, = w" {33-16)

_ Figure 33-10 shows that r and o are not independent of
each other. Let us express each in terms of z, the distance
- from the center of the loop to the point P. The relationships

are
r=+RT+ 22
- R R
cosa = — =
r R+ 2

';?.:'Substituting these vatues into Eq. 33-16 for dB, gives

- FoflR

dB, 47r(R? + zz)qus
ote that i, R, and 2 have the same values for all current el-
ements, Integrating this equation, we obtain

= o iR _
B J’d& po g st (33-18)

(33-17}

noting that {ds is simply the circumference of the Joop
= 2nR),
HoiR?

= m . (33-19)

dB K4
S
a8, Tep
%
z
d8 /e
‘ ., . .
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R

P34-6 (] Far from the plane of the large loop we can approximate the Targe loop as 2 dipole, and
then

s ¥

fioiT

[ e BB

28
The Bux through the small loop is then

Iy ot o ()

+
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by &= —dbpfdt, 5o
pgimierd 2 .

£
Gyt

{e} Anti-clockwise when viewed from ahove,



1-9 solution:

The atom acts as a Hertzian dipole at the origin with dipole moment P = gE = aE e~'“t2, At large r
the asymptotic (radiation) electric and magnetic fields radiated by the atom are

2

ok,
B(r,t) =~ o

i) . it T
— GG~
4mreqcdr ¢

E(r,t) = —

2
aFyw® T
— 5 Sinfe™'*tg
4dmegcir

The energy radiated per unit solid angle is

dw _ <N> € B2 = a?Eiw*

— T s B einl
- . “3211250:3 sin“ @

The approximation used is 7 3 A > I, where [ is the linear dimension of the atom and A = 2rrc/w. As w
is increased, A will decrease and eventually become smaller than I, thus jpvalidating the approximation.



| QE-~PhP.

[T-15] Seluion:

| (“)Fvom\ theufmomﬂenevg'g caﬂafarfva-i‘(% |

(F f*fe
E+E 8+E’

lw-e d’ N e £ are “ e memonda, c:wto(enev;ue.r |
Jhe (I7f19 f_‘ofﬂ bﬁ.’«fm‘l MJ\ CI:F{‘eY‘ Az Sc‘aﬂemujy

;Weat‘vela (P E are the fcmo(wawemt‘wm

omd emeygless ftgho, elzetron, omd €, 4o s

.Lmnttaﬁ weva% (Ve hweforw.a./ectrw*\ o

eq Fe_ Q+ m’ c:L" ,E o ’W' C o

M.(MMY“ll-e /tR-Q Cl.bD’U'e _QTLLQ_{-{OM M iﬁoform -

P(Pd%

To slve these @quations LUE Moy express

tl«sz Amam-extuum %Pm Pecer [ eledtroy, R

i two WW



[:Tﬂlojf

Comtimued .

e B (F"F) +Q4«c@-@5) i fw::.'/ug A =

eqpective Qquations from part (@)

pE (1-co50) = me (p-F)

and when =T, .C,g-:ye =0. We hare

dbuvx&e: HelpF)  of e may
3 (PP ond obtade




Physics PhD Qualifying Examination
Part Il — Friday, August 28, 2015

Name:

(please print)
Identification Number:

STUDENT: insert a check mark in the left boxes to designate the problem numbers that
you are handing in for grading.

PROCTOR: check off the right hand boxes corresponding to the problems received from
each student. Initial in the right hand box.

% Student’s initials

3

g # problems handed in:
6

; Proctor’s initials

9

10

INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

1. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE
COLLATED AND GRADED BY THE ID NUMBER ABOVE.

2. Use at least one separate preprinted answer sheet for each problem. Write on only one
side of each answer sheet.

3. Write your identification number listed above, in the appropriate box on the preprinted
sheets.

4. Write the problem number in the appropriate box of each preprinted answer sheet. If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 of 3).

5. Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all problems that you are handing in.

6. There is no limit on the number of problems you can turn in.

7. A passing distribution for the individual components will normally include at least four
passed problems (from problems 1-6) for Quantum Physics and two problems (from
problems 7-10) for Thermodynamics and Statistical Mechanics.

8. YOU MUST SHOW ALL YOUR WORK.




-1 [10]

A particle of mass m moves in one dimension under the influence of a potential V (x). Suppose it
2\1/4

is an energy eigenstate y(x) = (y;) e~Y***/2 with energy E = h%y?/2m.

(a) Find the mean position of the particle.

(b) Find the mean momentum of the particle.

(c) Find V(x).

(d) Find the probability P(p)dp that the particle’s momentum is between p and p + dp.

-2 [10]

A weak perturbative potential is added to the one-dimensional simple harmonic oscillator with
mass m and frequency @ in the form of

V = AX,
where A is a constant.

(a) Find the lowest-order non-vanishing corrections to all energy levels and write down the new
perturbed energy levels to this order.

(b) Obtain the lowest-order non-vanishing corrections to all eigenkets of the unperturbed

Hamiltonian and write down the new perturbed eigenkets to this order.

You may find the number representation of the harmonic oscillator with the annihilation and
creation operators useful

Mo i N Mo i
a=.—|X+—p|, a =,]—x—p].
Zh[ Mo J 2h[ mao J



-3 [10]

(@) Consider a one-electron atom, write done its spin-orbit Hamiltonian.
(b) Let us assume that the un-perturbed atomic wavefunction of the atom (i.e. in the absence of

spin-orbit interaction) is given by |y/> Now, when the spin-orbit interaction is present, use
perturbation theory to find the eigenvalue of the state |1//> :

(c) Describe the degeneracy of the states.
(d) Work out the degeneracy for state with L=1 and S=1/2.

-4 [10]

In the Born approximation, evaluate the cross-section of scattering by a “delta-function”
potential. The scattering potential is given by: V(F): Bd(F), where we take the force center as
the origin.

(a) Obtain the differential cross-section and the total scattering cross section using the Born
approximation.

(b) Discuss the case with a delta-function potential with respect to the interaction-potential of
very small range (r., ) which is much less than the deBroglie wavelength. In this scattering

isotropic and thus velocity independent? Discuss the applicability of Born approximation.

Note that B is a constant and equals to the volume integral of the delta-function potential.



11-5  [10]

The relationship between the wavelength 2 and frequency v for the propagation of
C

Jvi-vé

light and v, standing for the minimum frequency for which waves will propagate.
Calculate the group velocity vy and phase velocity vp, of the waves.

electromagnetic waves through a hollow waveguide is 1= with ¢ being the speed of

-6  [6/4]

A hydrogen atom in its ground state is placed between the parallel plates of a capacitor. For

times t <0, no voltage is applied. Starting at t =0, an electric field E(t) = E ,Ze "' is applied,

where 7 is a constant.

(a) Derive the equation for the probability that the electron ends up in a state j due to this
perturbation.

(b) Evaluate the result if state j is a:

(i) 2s state (parity argument may simplify the calculation);
(i) 2p state.

The normalized eigenstates of the hydrogen atom (you may not need all):

1
Do =
\/;3.03/2

—rla,

€ )

1 r “ri2
= 1- g%
P = ey ( ZaJ

1 r —r/2a, 1 r —rl/2a; o; ¢
= e coséd, w=—75| — |6 7singe™”
D210 (28.0)3/2\/;(23.0] P11 8a03/2 (aoj

where a, is the Bohr radius.




-7 [37]

The Van der Waals equation of state is given by

(o ——

where P is the pressure, V is the volume, T is the temperature, N is the number of atoms, and k is
the Boltzmann constant. a and b are material specific constants.

(a) Give a physical interpretation of the above equation, in particular, describe the role of the
constants a and b.

(b) Express the critical temperature, volume, and pressure, T, V., and P¢ , in terms of the
constants a, b, k, and N.

-8 [2,4,4]

The Helmholtz free energy of a dilute plasma gas consisting of N electrons confined to a
volume V at temperature T is given by

2 1/2
F(T,V,N)=F‘dea'(T,V,N)—éNeZ(MNe) ,

Vk, T
where e is the electron charge, k, is Boltzmann’s constant, and F ' (T,V,N) is the Helmholtz
free energy of a mono-atomic ideal gas.

(a) Obtain the equation of state of the above plasma gas.
(b) Obtain the internal energy of the system E(T,V,N).

(c) Obtain the constant-volume heat capacity C, .

Note: your answers should be fully explicit in terms of the variables T, V ,and N . To that end,
you are expected to remember and use the equation of state, internal energy, heat capacity of the
ideal gas in obtaining your final results.



-9 [10]

Two containers are at the same temperature T. The first contains gas at pressure p; whose
molecules have mass m; with a root-mean-square speed Vims1. The second contains molecules of
mass m, at pressure 2p; that have an average speed Va2=2Vims1. Find the ratio my/m;, of the
masses of the molecules.

11-10 [10]

Consider a two-dimensional photon gas confined to an area A=LxL. What is the average
number of photons in the system at temperature T ?

Your answer must be expressed in terms of A, T, and of course, the necessary fundamental
constants.

To keep your expressions relatively compact, the following relationship will come useful:

o0 v=1

'[ )i 1dx=1“(v)§(v), where T'(v) is the gamma function and ¢ (v) is the Rieman zeta
e —

0
2

function. In particular, £(2) =%.

(You must derive your answer. Guessing or hand-waving the answer, or pulling it out of your
memory, will yield zero credit.)
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li-1 solution:
{a) The mean position of the particle is
< x >= ffomt[)“(x)xll)(x)dx = y/\/Ef_[_nm xe~V' ¥ gy =0
(b) The mean momentum is

2,2
<p>= [0 @] GUE)dx = vh/iVE [T, xe ™ 3 (e /2)dx =0
(c) Fromthe SE eqgn, '

he d?
o TP = (E = V()p(x)
As
R 42 y2x® h2 ....E
W%Ee 2 =—m(__},2 +},4x2)e Z
we have,
hZ
—_ — a2 4.2
E=V(x)=—5—(-v? +7*s?)
or
h? R2y?2  pyix?
=Y 422 _ ! .
V{x) 2m(yx y)+2m -~
(d) ¥(p) can be obtained by direct Fourier transform,
: 1/4 D 1/4 . 2
Vo2 = [ e (L) e [ i (1) F3)
2mh T *’Znh T
1 1/4
= (................_..._...) e—PZ/Zﬁzyz
h2yin

and,

e ,_,pZ/hZ.yz dp

1
P(p)dp = Y(p)y* (p)dp = P
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EXAMPLE 2.10 The relation between the wavelength A and frequency v for the pro-
pagation of clectromagnetic waves through a wave guide (typically a hollow
rectangular or cylindrical metal pipe) is given by

Ao c

v2—v2

What are the phase and group velocities of these waves? Note: For a wave guide
the constant vy is the minimum frequency for which the waves will propagate.

SOLUTION The relationship between the wavelength A and the frequency v can also
be expressed in terms of the wave vector & and the angular frequency w as

ke = \fw? — o}

or

W= \/(kc)z +wf = C\/kz + (wp/c)

where wy = 2T vy, The phase velocity is given by

Uph = -H_J e M =C\/l+(wn/k6')2

k k
which is greater than ¢, while the group velocity is given by
dw k ¢

Ug =

k" TRt woleR | VIt @n/keR

which is less than c. Note that vpyug = c2.

A phase velocity that exceeds the speed of light may seem troubling at first.
But it is the group velocity that determines how fast, say, information is transmitted
by a localized wave packet. The phase velocity is simply the velocity of a particular
point on a wave with a definite wavelength, a wave that extends throughout space,
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Moxwell 's speed digh botiou

32 -2 BT
0= b (
NGre) vte

Qo

v
Queerioe Qraacl.  ar w_:\s_g h(,\,.)cq,\_-,—
(s

— /D %t

= YT S ¥\ 3 e
(IEeT) |
gurT

on e

oo frasona. oo ;s \ngjj
Speech Vewas = \ o

What is important here is the temperature; since the temperatures are the same then the
avetage kinetic energies por particle are the same. Then

L, ,
"'z"n?l(l“rmsj )- = Tﬁ)'ﬁ}?{'”rum,‘.’} .

We are given in the problem that v 2 = 20, 1. According to Eqs. 22-18 and 22-20 we have

" fSRT Jsﬁ f v‘};l
s
i n!

Cowbining this with the kinetic energy expression above,
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Consider a two-dimensional photon gas confined to an area A. What is the average
number of photons in the system at temperature T ?

Your answer must be expressed in terms of A, T, and of course, the necessary
fundamental constants.

To keep your expressions relatively compact, the following relationship will come useful:
_f——-——-dx ), where I (V) is the gamma function and ¢'(v) is the Rieman zeta

2 — ~ e, 3, ..
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