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Physics PhD Qualifying Examination
Part I - Wednesday, August 20, 2014

Name:

(please print)
Identification Number:

STUDENT: Designate the problem numbers that you are handing in for grading in the
appropriate left hand boxes below. Initial the right hand box.

PROCTOR: Check off the right hand boxes corresponding to the problems received from
each student. Initial in the right hand box.

; Student’s initials

3

;‘ # problems handed in:
6

;;I Proctor’s initials

9

10

INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

1. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE
COLLATED AND GRADED BY THE ID NUMBER ABOVE.

2. Use at least one separate preprinted answer sheet for each problem. Write on only one
side of each answer sheet.

3. Write your jdentification number listed above, in the appropriate box on each preprinted
answer sheet.

4. Write the problem number in the appropriate box of each preprinted answer sheet. If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 of 3).

5. Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all problems that you are handing in.

6. A passing distribution for the individual components will normally include at least three
passed problems (from problems 1-5) for Mechanics and three problems (from problems
6-10) for Electricity and Magnetism.

7. YOU MUST SHOW ALL YOUR WORK.



-1 {10]

A particle slides freely and without friction on the top surface of a spherically-shaped solid
object with radius R. The mass of the particle is m and the magnitude of the gravitational
acceleration is g. The particle is initially at the top of the sphere with infinitesimally small
velocity. Determine the angle ¢ at which the particle “takes off”, i.e., the angle at which the
particle separates from the surface of the sphere. See illustration below.

-2 [10]

Two thin beams of mass m and length / are connected by a frictionless hinge and thread. The
system rests on a smooth surface in the way shown in the figure below. At t=0, the thread is cut.
In the following, you may neglect the thread and the mass of the hinge.
(a) Find the angular acceleration of the hinge as a function of angle, 6. Also, explain its
physical significance.
(b) Find the speed of the hinge when it hits the ground, i.e. 6=0°.
(c) Find the time it takes the hinge to hit the floor, expressing this in terms of a concrete
mathematical integral which you need not evaluate explicitly.
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I3 [10]

A rigid uniform bar of mass M and length L is supported in equilibrium in a horizontal position
by two mass-less springs attached one at each end, as shown in the figure below,
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The springs have the same force constant k. The motion of the center of gravity is constrained to
move parallel to the vertical x-axis. Find the normal modes and frequencies of vibration of the
system, if the motion is constrained to the xz-plane.

I-4  [10]

A particle of mass m is moving under the influence of a central potential (with a fixed center),
U(r)=kIn(r),

where & >0 is a constant. The particle performs circular motion with a radius r, . Determine the

frequency of small oscillations @, about this circular orbit. Your answer must be expressed in

termsof m, k,and r,.



-5 [10]

As viewed from the laboratory frame of reference, two particles of rest mass m are emitted in the

same direction. These particles (particle A and particle B) have momenta of 5mc and 10mec,
respectively. (¢ = the speed of light)

(a) What is the velocity of particle A, as viewed from the laboratory frame of reference?
(b) What is the velocity of particle B, as viewed from the laboratory frame of reference?
(c) What is the velocity of particle B, as viewed from the reference frame of particle A?

(d) What is the velocity of particle A, as viewed from the reference frame of particle B?

16  [10)

The linear charge density p on a ring of radius a is given by:

plp)= (%)[cos(m ~sin(2¢)],
where @ is the polar angle in the plane of the ring, i.e. the xy plane (see the illustration below).

(a) Find the mono-pole and the dipole moments of the system;
(b) Explain briefly the physical significance of the derived results.
(c) Calculate the potential at an arbitrary point in space, accurate to term in r~.
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-7 [53,2]

(a) Show that it is possible for electromagnetic waves to be propagated in a hollow metal pipe of
rectangular cross section with perfectly conducting walls.

(b) What are the phase and group velocities for this system?

(c) Show that there is a cutoff frequency below which no waves are propagated in this
rectangular pipe.

-8 [10]

Two infinite parallel wires separated by a distance d carry currents /;=2[, and I,=-f, with
current increasing at the rate dl/dt. (Note that the two currents flow in opposite directions.) A
square loop of wire of length d on a side lies in the plane of the wires at a distance d from one of
the parallel wires, as illustrated in the figure below.

I=2],

) d

) 12 =-Ia d
d

(a) Find the emf induced in the square loop;
(b) Is the induced current clockwise or counterclockwise? Justify your answer.



19 [10]

A non-relativistic positron of charge e and velocity v, (v, <« ¢) impinges head-on on a Sixed
nucleus of charge Ze. The positron, which is coming from far away, is decelerated until it comes
to rest and then is accelerated again in the opposite direction until it reaches a terminal velocity

. dx 3a+4ax+8x?
of v,. [Hint: Note that fx_3—\/x(x_'_-5 =2yx(x—a)* a_lfﬁ?— ]

() Taking radiation loss into account (but assuming it is small) find v, as a function of I’
and Z.

(b) What is the angular distribution (35) of the radiation?
(c) What is the polarization of the radiation?

10 [4,4,2]

In reference frame K, an infinite, uniformly charged thin sheet in the x-z plane is moving to the

+X direction with velocity v. The uniform surface charge density of the sheet is &y, if measured
at rest,

1\7 K

K’ g
———
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e

(a) What is the electric field vector in reference frame K?

(b) What is the magnetic field vector in reference frame K?

(c) What is the force on a point charge gy, that is moving at a distance y above the charged
sheet with a velocity u to the +3% direction? (Both the velocity u and the force are
measured in reference frame K, while the charge go is measured at rest.)
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solution:

Solving for the velocities of particles A and B in the laboratory frame,

myv =p
1 v?
Ly . vl 4 mzvz.___pz(l_c_z)
B
2 2
2({ 2, P \_.2 - p
v (m +cz) p? - v -y

_ (5mc)? _ |25
A= ImT+ GmoEjce - 26

~ (10mc)r  _ |100
VBE |mE+ (10mc)Z/c? - J101

Transforming the velocity of particle B vg to the reference frame of particle A,

100 25 100 25
vp = (Vg — V4)/(1 —vavp/c?) = C( "10—1- }2_6 ’/(1- 0171~ 0.595¢

alternately, the velocity of particle A as measured from the reference frame of B > vy = —0.595¢
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solution:

As the radiation loss of the positron is much smaller than its kinetic energy, it can be considered as a

small perturbation. We therefore first neglect the effect of radiation. By the conservation of energy,

when the distance between the positron and the fixed nucleus is 7 and its velocity is v we have,
I 1 Ze? 1

= LI S}
2™ +41teo I R

When v = 0, r reaches its minimum ry. Thus,

1 Zze?
416g To

_1 2 . ze? 2 _ .2 To
=smyi or 7= F— with v° = v{(1 r)

Differentiating the last equation we have,

2

UT' . V1T
21'1'_1_07- —_ f:;l_:
r 2r

from Larmor’s formula, the rate of radiation loss is given by

2¢% dw _dw __ dw
=33 T’ W[hP—I—FT—?U
i i =122, - (L) (20) (dn)’
Salving for dW vyieids, dW = fedr (v1 Jl-r_o/l") (3‘:3 ( 211-2) dr
e? vlro dr 8 v}
AW = Zf dw =2 f ————mv?
re T3 Jr(r — ro 457c3 1

1 1
Assmvi = -mv{ — AW, we have

16 v}
vi=vil-35 7z

Hence,|v; = v3(1 I
R 452¢3

asv; «c.

Because v, « ¢, the radiation is dipole in nature so that the angular distribution of its radiated power is

given by —::: o¢ sin? a with 8 being the angle between the directions of the radiation and the particle
velocity.

The radiation is plane polarized with the electric field vector in the plane containing the direction of the
radiation and the acceleration (which is the same as that of the velocity in this case).
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Name:

Physics PhD Qualifying Examination
Part II - Friday, August 20, 2014

(please print)

Identification Number:

STUDENT: insert a check mark in the left boxes to designate the problem numbers that
you are handing in for grading,

PROCTOR: check off the right hand boxes corresponding to the problems received from
each student. Initial in the right hand box.

: Student’s initials

3

g # problems handed in:
6

; Proctor’s initials

9

10

INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE

COLLATED AND GRADED BY THE ID NUMBER ABOVE.

Use at least one separate preprinted answer sheet for each problem. Write on only one
side of each answer sheet.

Write your identification number listed above, in the appropriate box on the preprinted
sheets.

Write the problem number in the appropriate box of each preprinted answer sheet. If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 - Page 1 of 3).

Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all problems that you are handing in.

A passing distribution for the individual components will normally include at least four
passed problems (from problems 1-6) for Quantum Physics and two problems (from
problems 7-10) for Thermodynamics and Statistical Mechanics.

YOU MUST SHOW ALL YOUR WORK.
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The wavefunction for a particle of mass M in a one-dimensional potential V(x) is given by the
expression

iyt
Pz, t) = axe'ﬁ"e"}’l'. for x>0
PY(x, t) =0, for x<0,

where a, B, and y are all positive constants.
(a) Is the particle bound? Explain.
(b) What is the probability density p(E) for a measurement of the total energy E of the
particle?
() Find the potential ¥ (x) in terms of the given quantities.

112 [10]

Consider a particle of mass m in a one-dimensional box with infinite high potential wall at x=0
and x=L.

(a) Find the eigenvalues E, and eigenfunctions ¢,,(x) of the particle in the box.
(b) Calculate the first-order correction to £, due to the following perturbation:

x2

H,=10-3EIF,



-3  [10]

A beam of identically prepared spin % atoms with S, = +%/2 orientation and with unit intensity
goes through a series of Stern-Gerlach-type (SG) measurements (selective filtering) as follows:

® The first measurement accepts S, =+#/2 atoms (and rejects S, =-#/2 ones), where
S,=1h/2 are the eigenvalues of the spin operator S-# along the direction

i = (cosgsin 4,singsin J,cos $); (9 and ¢ are the polar and azimuthal and angles,
respectively).
* The second measurement accepts S, = —h/2 atoms (and rejects S, = +%#/2 ones).

|Sni +) 1S2; +)
> R ]

SG i % SGZ
180 =) [S2; =)

What is the intensity of the final S, =~#/2 beam? (You must express your answer in terms of
9 and ¢.)

|Sz; +)

AN

v

-4 [64]

Evaluate the differential scattering cross-section in a repulsive field, V() = 4 /r?, in the Born
approximation and according to classical mechanics. Determine the limit of applicability of the
formulae obtained.

Hint: (a) Make an argument that the Born approximation is valid at all scattering angles where
the classical result holds only for not too small angles.

(b) For the classical-mechanics case of scattering in a central force field you may want to
use the integral of the form:

W=T dr
,nrz\fsz 2mV A

12 12 r!

here y is the angle between the direction of the incoming asymptote and the periapsis ( closest
approach) direction. Hence, the scattering angle is given by ©=7-2y, and [ = my,s =

svV2mE with s being the impact parameter and v is the incident speed of the particle, m is the
mass and E is the energy.



I1-5  [10]

A beam of electrons is to be fired over a distance of 10*km. If the size of the initial wavepacket

is 1 mm, estimate the size upon arrival, assuming a non-relativistic average kinetic energy,
K =13.6¢eV.

116 [10]

Consider a charged one-dimensional harmonic oscillator with mass m, frequency w,, and
charge g . Initially the oscillator is in its unperturbed ground state when there is no electric field
present. At ¢=0 a weak spatially uniform electric field E = E_ e™” cos(w¢) is imposed (the
field is parallel to the direction of motion of the oscillator) with y < @, . Using time-dependent
perturbation theory, find the transition probabilities to all excited states for ¢ = . For fixed o,

and y, what value of @ maximizes these transition probabilities? You may find the number
representation of the harmonic oscillator with the annihilation and creation operators useful
mmo( i + ma)a( i
a= X+ pl,a = x- pl
2h k mao 2h k ma,

o




-7 [10]

The Helmholtz free energy of a gas is given by F(T, V)=-%T4V , where a is a positive

constant. The gas is initially at temperature T and has volume V . Then the gas undergoes (Gay-
Lussac — Joule) “free expansion” from V to 81V . (In this process the gas suddenly and
adiabatically expands into vacuum, i.e., no work is done.)

Your answers must be expressed in terms of the initial temperature 7', the initial volume V', and
the constant a, but may not necessarily involve all of them.

(a) Obtain the final temperature 7, of the gas.
(b) Calculate the total entropy change AS of this gas during the above free expansion.

-8  [10]

The equation of state of a simple ferromagnetic material is given by the implicit expression
. tanh(']m+ B}
kT
where m =m(T, B) is the dimensionless magnetization (order parameter), B is the external

magnetic field, T is the temperature, & is the Boltzmann constant, and J is a material-specific
constant.

(a) What is the critical temperature T, below which the system exhibits spontaneous
magnetization? (We refer to spontaneous magnetization when m#0 at B=0.)
(b) Show that in the region just below T, the spontaneous magnetization behaves as
m(T,0) = const. | T =T, |°,
and determine the value of the critical exponent b .




119 [6.4]

Consider a system composed of a very large number N of distinguishable atoms at rest and
mutually noninteracting, each of which has only two (nondegenerate) energy levels: 0, £> 0. Let
E/N be the mean energy per atom in the limit N— .

(a) What is the maximum possible value of E/N if the system is not necessarily in
thermodynamic equilibrium? What is the maximum attainable value of E/N if the system is in
equilibrium (at a positive temperature)?

(b) For thermodynamic equilibrium compute the entropy per atom S/N as a function of E/N.

II-10 [10]
Consider a three-dimensional extreme-relativistic (£ =cp) free electron gas confined to a
volume ¥ = [’. The number of electrons is N .

Obtain F,, the pressure of the system at 7 =0. You must express your answer in terms of the
electron (number) density N/V .
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solution:

(a) The particle is in a bound state because the wavefunction y(x, t) satisfies
lime, o 9(x,t) =0, and limy e p(x,t) = Jim_axeAretre/h =,

Iyt
{b) E¥(x,¢t) = ih%‘l’(x, t)=ih (% axe Bx e{_) = —y¥(x,t)

Hence, W(x, t) is an eigenfunction of the total energy with eigenvalue - ¥, 50
1forE=-
p®) =i 4

OforE # -y
{c) (—%V2 + V(x)) Y(x,t) = —y¥(x, t)

2
h? V2W(x,t) . Q%V (e'p" (a - ﬁax))

2m ¥(x,t) Y axe—Bx

#2 —Bx 8% hz
=_y+m(*ﬁ’e #%(a - Bax) — apeP )=_Y+E(—Ba(1—ﬁx)—aﬂ)

axe—Bx ax

V(x) =—y+

2
= —y+_(_E+I32‘E) = | V() =~y +i‘(ﬁz—zxé)

2m
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solution:

Given a kinetic energy of K = 13.6 eV,

13.6eV
- e —— -3
v Jz* SiiMevycz - 2 107c

\ _ 10%*(km) _ 107[m] -
and the time spent in flight t = —= (7.3-10-3)-3-103[% = 4.6 [s]

For a non-relativistic velocity, we can approximate the spread of the wavepacket as a function of time,

w(t) Bt _ R2t2 2h2¢2
w(0) Jl R e = 1T mew4(0)

yielding a width upon arrivai of

. 2(4.13 » 10~15[eV * s])2(4.6 [s])?

w(t) =10"3[m] = (1 . > = 7.5% 107 [m]
10-12[m#] « ﬁc[f‘;”f_‘i_]
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