Physics PhD Qualifying Examination
Part I - Wednesday, August 24, 2011

Name:

(please print)
Identification Number:

STUDENT: Designate the problem numbers that you are handing in for grading in the
appropriate left hand boxes below. Initial the right hand box.

PROCTOR: Check off the right hand boxes corresponding to the problems received from
each student. Initial in the right hand box.

; Student’s initials

3

;1 # problems handed in:
6

; Proctor’s initials

9

10

INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

I. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE
COLLATED AND GRADED BY THE ID NUMBER ABOVE.

2. Use at least one separate preprinted answer sheet for each problem. Write on only one
side of each answer sheet. -

3. Write your identification number listed above, in the appropriate box on each preprinted
answer sheet.

4. Write the problem number in the appropriate box of each preprinted answer sheet. If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 of 3).

5. Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all eight problems that you are handing in.

6. Hand in a total of eight problems. A passing distribution will riormally include at least
three passed problems from problems 1-5 (Mechanics) and three problems from problems
6-10 (Electricity and Magnetlsm) DO NOT HAND IN MORE THAN EIGHT
PROBLEMS.

7. YOU MUST SHOW ALL YOUR WORK.




[I-1] [10]

Suppose the Moon were to have the same mass as the Earth, and you are trying to throw one of
your physics books from the Earth to the Moon. With what minimum velocity must the book
leave the sutface of the Earth?

Neglect the relative motion of the Earth and the Moon, and the rotation of the Earth. The mass of
the Earth is Mg = 6.0 x 10 # kg, the radius of the Earth is Rg = 6.4 x 10°m, and the distance from
the center of the Earth to the center of the Moon is Rgy 3.8 x 10 ® m.

Compare your answer to the escape Véiocity from Earth alone. The gravitational constant is G =
6.67 x 10 ' Nm?=kg’.

[1-2]  [10]

A particle of mass m initially rests ofn_»a smooth horizontal plane. The plane is then raised to an
inclination angle .9 at a constant rat¢,$ =« ¢, causing the particle to move down the plane.

Determine the full motion of the particle, i.e., explicitly solve for r(¢).

r(0) = v,

r(t)




[1-3]  [10]

Carbon d10X1de COy, has an equlhbrlum structure with three atoms aligned along an axis with
the carbor atom located at the center of the molecule. The carbon atom is connected to the two
oxygen atoms with chemical bonds. At finite temperatures, the relative positions of these atoms
are subjecféd to thermal motion. The thermal motion can be considered as a superposition of
normal modes of atomic motions. The chemical bonds can be considered as springs which follow
Hooks law with a spring constant k. The displacements of the three atoms’ from their equilibrium
position are x; (O), x, (C), and x3 (O). The mass of carbon atom is M and the mass of oxygen
atom is 7. Assume all atoms only can move along the long axis of the molecule. Write down the
equations of motion. Find the eigenfrequencies and the eigenvectors for each of modes.

[1-4]  [10]
A particle of mass m is moving under the influence of a central potential (with a fixed center),
. - U@r)=kn(r),
where &k > 0 is a constant. The particle performs circular motion with a radius 7, . Determine the

frequency of small oscillations o, about this circular orbit. Your answer must be expressed in
terms of 7, k, and v, .

[1-5]  [4,6]

One of the KL meson decay modes is té three neutral pions:
. KL — 3
The masses are myx = 498 MeV/c? and . my = 135 MeV/c’.

(a) What is the kinetic energy of pion number 1 if pion number 3 is at trest? Give your answer in
MeV.

(b) What is the kinetic energy of pion number 1 if pion number 2 and pion number 3 go the same
direction as each other with identical energies? Give your answer in MeV.



(1-6]  [10]

(a) Write the general solution for th_¢ potential inside an empty conducting sphere of radius R
(i.e., no charge distribution inside), with a defined potential V(&',¢’) at the surface of the sphere.

{b) Solve the special case where

+V, for 0 < 8' < m/2

Vg = {—Vo for m/2<6'<m

along the z-axis (i.e., for 8= 0).

(17]  {10]

A circular parallel-plate capacitor with a radius R is being charged with current 7 as shown in the
figure. Assume that the electric field is uniform between the plates.

!}

T

1 omm
(a) What is the magnitude of the induced magnetic ficld between the plates and at the position
r < R and r > R from the center?

(b) What is the direction of the induced magnetic field when viewed from the top plate’s side?
(justify the reason).

(c) Between the plates, what is the ni'agnitude and direction of the displacement current at the
distance »=R/5 from the center in terms of 7 ?



[1-8 ] [10]
{(a) Write down the Biot-Savart law.

(b) Currents / are running in copper wires as shown below. Find the magnetic field at point P for
each of the steady current configurations shown in the diagrams (1) and (2).

s

(1) (2)

[1-9] [4,6]

An electric dipole of moment p is pl:_iced at a height & above a perfectly conducting plane and
makes an angle @ with respect to the normal to the plane (see figure below).

]
A
i
1
1
|

}?"x'

6

(a) Indicate the position and orientation of the image dipole and the direction of the force felt
by the dipole.

(b) Calculate the work required to remove the dipole to infinity.



[ I-10] [10]
Consider two charges g4 and gg. ChairgG ga 1s at rest at the origin in system S.

(a) Charge g flies by at speed v on a,‘g\r’éjectory parallel to the x-axis, but at y=d.
What is the electromagnetic force on gg as it crosses the y-axis?

{(b) Now study the same problem from system S’, ¢ is at rest in S’ and S’ moves to the right
with speed v. What is the force on gg when g4 passes the y’ axis?
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Problem I-1 l

Suppose the Moon were to have the same mass as the Earth, and yoii are trying to
throw one of your physics books from the Earth to the Moon. With #hat minimum
velocity must the book leave the surface of the Earth?

Neglect the relative motion of the Earth and the Moon, and the Earths rotation.

The mass of the Earth is, Mg = 6.0 x 10**kg, the radius of the E'arth is, Rg =
6.4 x 10°m, and the distance from the center of the Earth to the center of the Moon
is Ry = 3.8 x 10%m

Compare your answer to the escape velocity from Earth alone. The graVitational
constant is G = 6.67 x 1071 Nm?/k¢>.

Solution

We can detérmine the escape velocity using conservation of energy, Wwhere energy is
given by the sum of potential energy due to gr av1ty and kinetic energy. In the case
of Earth along the potential is given by :

MEm

#(r) =G

where m is the mass of the book. The book vvﬂl escape if its initial kinetic energy is

high enough to overcome the potential at r = Rg . Thus

1 MEm
‘im’UQE': —G RE
“and _ :
; Ve
vg = {/2G=E = 11km/s
Rp

In the Earth-Moon the potential is,
. Mgm _ G Muyum

) = R =)

Using Mg = M3y, as stated in the problem, the potential is a symmettic double well.
In order for the particle to leave the surface of the earth, the kinetic energy must be

high enough to overcome a saddle point right in the middle between the Earth and
Moon.

The condition for escape velocity is v

1 1 1 4G Mgm
- GMpm(—+ ——) = —— 2
2mUE Em(RE * Rey — RE) Ryg

This gives vy = 7.7km/s.
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—o’m, +k —k 0 4,
—k —a'm,+2k 5—k 4, |=0
0 -k —a) ol + k )\ 4,

A condition of these equations to have non zerosolution is the determinant of the matrix is zero.

~’m, +k ~k 0
> -k —o’m,+2k  _~k |=0
| o0 —k —"cozm1+k

> (—m2m1 +k)( —o’m, +2k)( —o’m, +k) 2k’ (~a*m, +k) =0
> (—cozm1 +k)2 (—a) m, +2k) 21{2 (—a) m, +k) 0
> (—a)zml +k) [(—(ozm1 + k)( o’ 7112 +2k) 2k2] =0

(:—a)zm1 + k) =0>0= —nlz—l
[(—a)zm1 + k) (—a)zm2 + 2k) - 2k2] =0
> mm,e* —k(2m, +m,) @ +2k2 2k =0

_amm7a) ~k(2m, +m,) @’ —0

9[m my@” —k(2m, +m2)]a) —0

.9
There are three solutions.

a, =0,
[k (2m +m,)

nm,
|k
CO3 = e
m

Substitute @ = [—
m

into the equation of motion. -
(—a) my+ k) A~ kdy =0> (= k+k)A —kd, = 09~kA2 0>4,=0
Slmllarly, from —k4, +(—(0 m, +.k) A, =0>-k4, =0



Aé:—_zfl%_/jz
m

Eigen vector for

e fk(2m1+m2) .
mlmZ

AiA(—e ‘1 —’8) where 8il1—12;>0
2m,

The oxygen atoms and the carbon atom moves opposite direction. Asymmetric vibration.

For =0 ) substitute into
(~0’my + k) 4~ kd, =0
> (k)4 ~kd, =0> 4 = 4,

=>Similarly from —k4, +(—a>2m1 ik)A3 =0.

4,= 4,
%A1=A2:A3
S>A=4(1 1 1)

All atoms move same amount in same direction.
“» Translational motion
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2
Problem I1-6

i. Write the general solution for the potential inside an empty (i.e., no charge distri-
bution inside) conducting sphere of radius R, with a defined potential distribution
at the surface ¢(R, 8, ¢). ‘

i) Solve the special case where
| V(o) =+Vy for0 < 6 < /2 (0.1)
==V forr/2< 0L
along the z-axis (i.e., for § = 0).
Solution: ‘
i. In spherical coordinates, the Green’s function can be written as
1 1

G(7. 7)) = — - T
Z,7) (2% + 72 — zmmlcos,-y)l/Q (22272 /R? + R? = 22/ cosy)1/2

and the Dirichlet boundary condition gives a surface charge density
T @+ R -2 R cosy)31?

such that
1

o) = [ o0, ¢) i )

22+ R2—-2Rzx 6557)3/2

where , , : }
cosy = coslcost + sinfsinb’cos(¢ — ¢')
ii. For the specified potenfi‘al;

VR(@? - RY) [* [ 1 1 |
0,0) = LT 1) [T 0w [ dlcosty -
¢(z,0, ¢) y /0 ¢ /0 (cos )[( R% 4+ 22 — 2Rzcosv)%?  (R? + 22 + 2Rxcosy)/ ol

Considering the special case of 6 = 0, then cosy = cos(¢') and

) 22— R
| #lz) = VIL- (\/7}1%2]
Notice that at z = R,
=V,

and at large distances goes asymptotically as
¢ ~ 3VR?/22%.



Forr>R,

[]des cosO" deS =27rB = p&, dj) = L&, (YZ'R )cjf
dE

> 277B = 1, (7Z'R2) =

Direction is counter clock wise.

dCD . r? R/5
U‘jB “ds = ,Uogo i = Lol = Holg st R /”o( R) 25

i
-—) i, = 25 , direction is bottom to top plate.
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= L“' . A ! l L
Problem 12.44 y
. : ¥
(a) Fieldsof Aat B; E = 2= %9 B =0. So force on g is|F = —1—-2'1955', .
o . 47(60 d2 a8 4
aal £

(b) (i} From Eq. 12.68: |F = L q—‘ﬂy. (Note: here the particle is at &t in & )

dreg d&°
5 2 2) )
- . - 1 gaf{l—v%/c?) 1, ¥ .ga
it) From Eq. 12.92, with = 90°: B = —— Ja\1 - ?7/c") 1 = —dwily
4 @ Eq aneo (1~ 2 /2Pl B~ Tiey 27

{this also follows from Eq. 12.108)

B #0, but since vg = 0 in &, there is no magnetic force anyway, and | B = %q’;ZB
: ) MEY

Problem 12.45

For the solution also refer to:

David J. Griffith, “Introduction to Electrodynamics” 3™ edition, Prétitice-Hall 1999
Chapters 12.2.4 and 12.3.2.

e retamed.

Because F is the derivative of momefitum with respect to ordinitFy time, it shares the
ugly behavior of (ordinary) velocity, when you go from one inertial system to another: both
the numerator and the denominator must be transformed. "Thus,2

Chapter 12.2.4 .

= dpy dpy dpy/dt . Fy )
Toodt Y y(lmgggc_) y(1 = itz /<)
c ¢ dt
and similarly for the z component:
ﬁ'z — . Fz i
y(1 — Buy/c)

The x component is even worse:

dapy, d_p‘z F __ﬂ (dE)

5 _dbx _ ydp—yBdp® B T u\ar
Fo=p = vB .~ Bdx T 1 puy)
ydt — 12 dx 122 xfC

: c c dt
We calculated d E /dt in Eq. 12.64; putting that in,

s _ BB B
F, = ———1—?'3-;;—/7—— (12.67)

Only in one special case are these equations reasonably tractable: If tﬁé particle is (instan-
taneously) at rest in &, sothat u = 0, then

~ 1 - . .
: FL:;FL, Fy = Fy. (12.68)

| TTpss suu UL uASIotmation rules:

Chapter 12.3.2 -

(12.108)




Physics PhD Qualifying Examination
Part I — Friday, August 26 2011

Name:

(please print)
Identification Number:

STUDENT: insert a check mark in the left boxes to designate the problem numbers that
you are handlng in for grading.

PROCTOR: check off the right hand boxes corresponding to the problems received from
each student. Initial in the right hand box.

é Student’s initials

3

2 # problems handed in:
6

; Proctor’s initials

9

10

INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

1. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE
COLLATED AND GRADED BY THE ID NUMBER ABOVE.

2. Use at least one separate preprinted answer sheet for each problem. Write on only one
side of each answer sheet.

3. Write your identification number listed above, in the appropriate box on the preprinted
sheets.

4. Write the problem number m 1 the appropriate box of each preprinted answer sheet. 1f
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 of 3).

5. Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all eight problems that you are handing in.

6. Hand in a total of eight probléms. A passing distribution will normally include at least
four passed problems from problems 1-6 (Quantum Physics) and two problems from

_ problems 7-10 (Thermodynamics and Statistical Mechanics). DO NOT HAND IN
MORE THAN EIGHT PROBLEMS.
7. YOU MUST SHOW ALL YOUR WORK.




[O-1]  [82]

Consider the finite asymmetric potential well shown in the figure below for the discrete
spectrum, 0 < E < V.

{a) Obtain an equation for the discrete energy levels (you do not have to solve it). Make a sketch
to graphically illustrate the solutions of this equation.

(b) Consider and discuss the special (symmetric) case where V=V .
A V)

"

o

Fig. 1.

[ 11-2] [10]

Calculate the lowest-order correction to the energy of a one-dimensional simple quantum

harmonic oscillator
2
; p 2.2
_ H="— 4=
- m s 5 mwex
perturbed by a potential

Hy =—ax*.

: : . s: i 4 2
The ground-state wave function of the oscillator is given by 1, (x) = (%) exp (- m:’: ) :



[T-3]  [10]

Show that for a system consisting of two identical particles with spin 7, the ratio of the number
of states symmetrical in the two spins to the number of states anti-symmetric in the two spins is
equal to (7+1)/L

[I-4]  [10]

Using the t]“S“:orn approximation, evaluafé the differential scattering cross section for scattering of
particles of mass m and incident energy E by the repulsive spherical well with potential:

Vi(r)“—“ Vo for O<r<a
V(ry=0 for r>a

[1I-5] i1,3,5,1]

Here we consider one-dimensional quéhtum mechanics with a Gaussian wavefunction
» p =N exp(-ax’),
where N is a normalization constant. -
(a) Find the normalization constant N such that the wavefunction has unit normalization.
(b) Find the uncertainty Ax.
(c) Find the uncertainty Ap.
(d) Cdt’ﬁpute Ax Ap and compare to the uncertainty principle.



[I-6]  [10]
An electronic two level system was iﬁ its ground state | g) for # < 0. An oscillating electric field

is applied at t= 0 (and thereafter). The interaction between the system and the electric field is
given by the Hamiltonian
H1 — __ﬁEoeiwt - ﬁEoe~iwt

>

where 4 i$ the operator for the electr'i‘:'_c;'}dipole moment in the direction of the electric field, and
E, is the ahplitude of the electric ficld. The eigenvectors and eigenvalues of the unperturbed

Hamiltonian are | g>, gy = hwy and |e> , € = hw, for the ground state and for the excited state,

f‘espectiveiy.

What is the probability of finding the system in its excited state |e> at time = T ? Draw a sketch
of the probability as a function of a}—a)eg, where w,, =@, — @,. Assume that the interaction

between the electric field and the two-level system is small enough that you can treat it as a
perturbation.



[II-7]  [10]

A monoatorhic gas obeys the van der Waals equation

_ NkT —aN :

' V-bN V?

and has the heat capacity C, =3Nk/2.in the limit of V' —> 0. (P is the pressure, V'is the volume,
N is the ﬁhmber of particles, k is the Boltzmann constant, and a, b are material-specific

>

© constants. )

a) Prove using thermodynamic identities and the equation of state, that

SN

b) Use the preceding result to determme the entropy of the van der Waals gas, S(T,V), to
within an additive constant.

¢) Calculate the internal energy U(T,V) to within an additive constant.

d) What is the final temperature when the gas is adiabatically and reversibly compressed
from (V;,T) to final volume V5 2

¢) How much work is done in this compression?

[11-8 ] i10]

Calculate the difference between c, and c, for the ideal gas. Here ¢, and ¢, are the specific heats
at constant pressure and constant volume, respectively. The ideal gas equation is given by:

PV =nRT

with therniodynamic variables pressure P, temperature 7 and volume V. R is the universal gas
constant and 7 is the amount of mols. About the ideal gas, all you can use is the equation state
given above. All other properties must be derived from there and from relevant fundamental
thermodynamlc identities. You must derlve your answer from scratch, and show all your work,
as always (1.e., this is not a memory test).



[I1-9]  [10]

The singl"g—barticle energy levels of a system of N distinguishable particles are ¢, =0 and
&, = ¢. The degeneracies associated with the two energy levelsare g, =g, =2.

Obtain the entropy of the system § (N ,7). What is the limit of the entropy as 7 — 0 ?

[-10]  [8,2]

A Fermi gas of spin % fermions of mass m is contained in a cubical box with side length L. The
number of particles in the box is N. The ground state energy is Us. The average kinetic energy

of the particles in the ground state is Ly/N.
(@) Cdﬁipute the average kinetic energy of the particles in terms of the Fermi energy .

(b) How does U, change if L is decreased while N is held constant?
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Modern Physws
11-4 Scatteting (Born Approx.) [10]

Using the Born approximation. Evaluate the differential scattering cross section for scattering of
particles of mass m and incident energy E by the repulsive sphencal well with potential

V(©)=V, fp'r_ O<r<a
V(r)=0 for r>a.
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Per‘tu,rbation approximation is introduced by expanding the coefficiefit as follow.
a,(1)=a"+aP +a +---

“)(t) -y (0)(t)<e[H|n) el 5 GO (1) {e| H, \n)e‘”"‘”’

n=g.e ne=g.e

éa(o) f

ih—= ( )+
ot

The system was initially in ground State,

. aaé t —iwg,1
ik 65 )-:-(elHllg)e

a(t) ~(

e|~iL,| g)e e +{e|- i | g)e e

Integratmg the equation from't=0 to t=T.
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