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Physics PhD Qualifying Examination
Part | — Wednesday, August 25, 2010
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STUDENT: Designate the problem numbers that you are handing in for grading in the
appropriate left hand boxes below. Initial the right hand box.

PROCTOR: Check off the right hand boxes corresponding to the problems received from
cach student. Initial in the right hand box.
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INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. [XAMS WILL BE
COLLATED AND GRADED BY THE 1D NUMBER ABOVE.

Usc at lcast onc scparate preprinted answer sheet for cach problem. Write on only one
side of cach answer sheet.

Write your identification number listed above, in the appropriate box on cach preprinted
answer sheet.

Write the problem number in the appropriate box of each preprinted answer sheet. [f
you use more than one page tor an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 ot 3).

Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all eight problems that you are handing in.

Hand in a total of eight problems. A passing distribution will normally include at lcast
three passed problems from problems 1-5 (Mechanics) and three problems from problems
6-10 (Elcctricity and Magnctism). DO NOT HAND IN MORE THAN EIGHT
PROBLEMS.

YOU MUST SHOW ALL YOUR WORK.




[ I-1 ] [0

A untform rope of mass M and length L is hanging from a cciling. The gravitational
acecleration s o .

How long doces it take for a transverse wave to traverse the full length of the rope?

(You must derive your answer. Guessing or hand-waving the answer. or pulling it out of your
memory, will yield zero credit))

[1-2] 13.7]

Two mass points myand m> (.m; # n> ) arc connected by a massless string of length / passing
through a holc in a horizontal table. The string and mass points move without friction with m, on
the table and m> free to move in a vertical line.
(a) What initial velocity must m, be given so that s> will remain motionless a distance d
below the surface of the table?
(b) I m:is slightly displaced in a vertical dircction, small oscillations cnsue. Use Lagrange’s
cquations to find the period ot these oscillations.
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[ 1-3] [10]
A mass i moving in space is subject to a force whose potential cnergy 1s

VoV expl(SxT RSy 4827 ~ 8z~ 26ay —8az)/ a’

]

where the constants V4 and « are positive. Show that ¥ has one minimum point. Find the normal
frequencics of vibration about the minimum.

[ 1-4] [10]

Determine the principle axis of inertia and principle moments of incrtia of a uniformly solid
hemisphere of radius b and mass m about its center of mass.

Hint: Use spherical coordinates
v~ reos(@)sin(d)
v - rsin(@)sin(d)
= =rcos(6)

[ I-5 ] I3’394]

The clectron has a rest mass of 9.1x10”'kg. On answering the following questions, relativistic
cffects must be considered.
(a) What is the rest energy of electron in units of ¢V?
(b) It the total cnergy of an electron is 2 times its rest cnergy, with what spced is the clectron
moving relative to the observer?
(¢) Calculate the kinetic energy in units of eV.

)



[1-6] 6]

(a) Caleulate the clectrostatic potential within a conducting rectangular box for which all
sides but one are grounded and the remaining side is at a potential ¥ (at = = 0 ). Let the
lengths ot the box in the x-, y- and z-directions be , b and ¢, respectively.

(b) Using the solution above, calculate the clectrostatic potential within a conducting box for
which all sides but two are grounded, and the two remaining sides are on opposite taces
perpendicular to the z-direction and with potentials Vi (at z = 0) and V> (at = = ¢ ). Let
the lengths of the box in the x-, y- and z-directions be a, b and c, respectively.

[ I-7] |1.1,8]

(a) Write down all four Maxwell's cquations for a system with charge density, pand current
density, j.

(b) Which equation represents Maxwell-Ampere’s law ?

(¢) Show that Maxwell’s cquations do not satisty the charge continuity cquation,
Cp

+divj =0, if the displacement current is not considered.
ot



[1-8] [10]

A loop is in a magnetic field. A conducting circular loop made of wire of diamcter d,
resistivity o, and mass density p,, is [alling from great height 7 in a magnetic field with a
component B, = By(1+« z), where «is some constant. The loop of diameter D is always parallel
to the x-y plane. Disregarding air resistance, (ind the terminal velocity of the loop.

Hint: From energy conservation, the work done by gravity during this stationary motion goes
into Joule heating of the loop.

&3




[1-9] (2,4,1,2,1]

The following three equations each describe the electric ficld E of an electromagnetic wave:

=5

(1) E, =L, sm(kz~-wt))
(2) E, = £, sin(kz—=wt) y
(3) E, =L, sintkz+wt)x

~

with k =27/A, 0 =2x/T =27 f, Af =¢,and ¢is the speed of light.

(a) Find the corresponding magnetic ficlds B for cach wave.

(b) Calculate the Poynting Vector S for a superposition waves (1) and (2). Calculatc also the
time average of' S for one period of oscillation.

(¢) Calculate the Poynting Vector S for a superposition waves (1) and (3). Calculate also
time average of S for onc period of oscillation.

(d) Calculate the energy density of the clectromagnetic wave resulting from a superposition
ol waves (1) and (3).

(¢) Consider the results of (b) and (¢), (d). Which of the two cases describes a standing or a
traveling wave?



[1-10 | [10]

Frame S™ moves relative to S in the v direction with speed v, A light source QO at rest at the
origin in 8* emits a spherical wave.  The light wave is obscrved at the point P - (x,y) in the
reference frame S and it is interpreted in that frame to have been emitted at the origin of S,
located at Q in the figure below. This same point P has coordinates (x"»") in 8™ and an obscrver
in 5" simultancously observes the light wave at that point. Derive the relationship between the
angles in the two frames.

Hints: The light wave is spherical in cither frame. [t travels a distance # from its source Q at the
origin in the S frame and a distance #* from its source Q at the origin in the S” frame. The
coordinates r” and 7,17 are related by a Lorenty transtormation.

ar, lj/)
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I-1[10]
A uniform rope of mass M and length L is hanging from a ceiling. The gravitational
acceleration is g .

How long does it take for a transverse wave to traverse the full length of the rope?
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Solution: (I -2)
(a) my must have a velocity v perpendicular to the string such that the
centripetal force on it is equal to the gravitational force on my:

Tfl]l]2
I—d mag
or
- ma(l — d)g
my

(b) Use a frame of polar coordinates fixed in the horizontal table as
shown in Fig. msy has z-coordinate —(I — r) and thus velocity 7. The
Lagrangian of the system is then

1 , . 1 .
L=T-V = le(fz + 1‘202) + §m2r’z +reg(l —71) .
Lagrange’s equations give

m|r29 = constant ,

(my + ma)F — mrd? + myg = 0.

At =0, r=1—d v= /my(l —d)g/my = vy, say, 50

Yy my g

=i T mi-d-
Hence
myr?d =my(l — d)zéo =My, / —:—‘l—!(l —d)3g ,
giving ) s
4 -
r02—%—_3—-=%(l rd) g
and

) 1-d\?
(m1 + ma)F — ma - g+mag=0.

Let r = (I — d) + p, where p <« (I — d). Then

P\ 3p
— -3 _ 1 _ -3 (- d)3 ————
F=p, r3=(-d) (1+l—d) (I-4d) (1 l—d)

and the above equation becomes

3m29
(m+ma)d =" ="

Hence p oscillates about O, i.e. r oscillates about the value | — d, with
, wit

angular frequency
= 3mg q
(my +ma)(I—d) ’

T = 27‘.\/(”‘1 + m2)([ - d)
.'Smgg ’

p+

or period
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Solution to I-4 Rotational Motion

X
Let the Surface of the hemisphere lie ift the x-y plane as shown. The mass density is given by
M__M _3M
Vo2 s 2’
3
First, we calculate the center of mass of the hemisphere. By symmetry

p

Xom =Yem =0

1
Zem = Lpz dv

Using spherical coordinates (z=r cos 8, dv = sin 6 dr 48 dg) we have

2 2 b
2oy =2 J- dg j sin & cos 846 jrB dr
M #=0 9=0 r=0

{2

We now calculate the inertia tensor with respect to axes passing through the center of mass:

By symmetry, I, =1, =1, =1, =1, =1, =0. Thus the axes shown are the principal axes.
Also, by symmetry I, =1,,. We calculate I,; using Eq. 11.49:

2
111:]11_MI:§U} (1)

where J;; = the moment of inertia with respect to the original axes

b2



Ju=p L(yz +Zz)dv
= L(r2 sin? @sin? ¢+ r? cos® 6?) r? sin @dr d0 dg

~ IM b 2| 2rx

=5 |rar ]| [(sin® 6sin’ g+ cos® 6) dg |sino 6

r=0 9=0| p=0
2 72
M [ (zsin® 6+27 cos? @sin 6) do
107 2,
-2y
5
Thus, fromi (1)
Iy =Ly == Mb? - — Mb? = > pMp?
5 64 320

Also, from Eq. 11.49

Iy =] = M(0) =]
(I3 = ]y should be obvious physically)
So

Iy =p L(xz +y*) dv

=p Lr" sin® @dr d0d¢=-§—Mb2

Thus, the principal axes are the primed axes shown
in the figure. The priricipal moments of inertia are

83
Ill - 122 =-§E6 sz

2
I, == Mb?
33 5
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Answer
E(a) 3, (b) 3, (c)4] -Relativity (Mechanics):

@ E,, =mc* =9.1x107"x(3x10°) =8.19x10™[J] = 512[keV |

rest

mc*

by E = =2mc* > L =2
total 5 by
1-Y ;l_f_
6‘2 c2

Solving forv, v =—£—c =2.6x10° [m/s]

() K=E,,—mc’=2mc*—mc* =mc® =512[keV]

i

I-7 {(a) 1, (b) 1, (c) 8] -Maxwell equation

(a)

JB

rotE = ——
ot

e i, . OE
rotB = u,j+ €, =

(b) rotB = uyj+ y,€, %];2

(c) Take div of the forth equation. divrorB =0 = y,divj +,UO€Oa'iv—a§]2 ,
!



I/7 cmf‘c

Take time derivative of the first equation. idivE - div—a—E _ _l__a_p_
ot o g ot

JE -
If the displacement current term, (/,€, —a—; does not exists, it becomes divj=0 and does not satisfy the

continuity equation.

11-3 [10] -Spiwr/angular mohé

Egr triplet ssatg

For singfet state(s=8),
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o lbioe s TR,

el -

The magnetic force acting on the loop is proportional to its magnetic .
ment, which is proportional to the current flowing through the loop. '11...
current [, in turn, is proportional to the rate of change of the magnetic i1 «
through the loop, since I = £,/R, where £, is the electromotive force i
I? is the resistance of the loop. We have

£ 1dd :
T e dt ‘
The magnetic flux P in 1) is given by
b = BS = By(l +x2)S Y

where S is the area of the loop. From (S.3.36.1),

- 1 AP 1 dz A
G = *: TE = —E nﬂzt's A
But dz/dt is the velocity of the loop. So the electromotive force increiu
vith the velocity, and therefore the magnetic force Fy acting on the loop
also increases with velocity, while the only other force, gravity, acting in the
opposite direction, is constant. Therefore, the velocity will increase unti
I - mng. From cnergy conservation, the work done by gravity during this
stationary motion goes into the Joule heating of the loop:

mgAz = [*RAE

But, since the velocity is constant,

Az  I*R £}  Bi x*v?S? .
At mg  Rmg ¢ Rmg '
where we substituted £, from .3) again using v = dz/dt. From
" 5), we can find
c*Rmg .
V=51 353 6)
B§k*S
Now, substituting
R D 4D ;
SPEL TR )
and 2
m=ppV = pmzr4—7rD 3)

6), we obtain

_ ppmgm* D 16¢%ppmyg
VT Bik (nD?J4)? | BiniD?
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Name:

Physics PhD Qualilying Examination
Part 1l - Friday, August 27, 2010

(please print)

tdentificaton Number:

STUDENT: insert a check mark in the left boxes to designate the problem numbers that
you are handing in for grading.

PROCTOR: check off the right hand boxes corresponding to the problems received from
cach student. Initial in the right hand box.

0.

i .

5 Student’s initials

3

4 .

: # problems handed in:
— () e

z Proctor’s initials

9

1O

INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE
COLLATED AND GRADED BY THE ID NUMBER ABOVE.

Use at least one scparate preprinted answer shecet for cach problem. Write on only on¢
side of cach answer shect.

Write your identification number listed above, in the appropriate box on the preprinted
sheets.

Write the problem number in the appropriate box of cach preprinted answer sheet. [
you usc more than onc page for an answer, then number the answer sheets with both
problem number and page (c.g. Problem 9 - Page | of 3).

Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all cight problems that you arc handing in.

Hand in a total of eight problems. A passing distribution will normally include at lecast
four passed problems from problems 1-6 (Quantum Physics) and two problems from
problems 7-10 (Thermodynamics and Statistical Mcchanics). DO NOT HAND IN
MORE THAN EIGHT PROBLEMS.

YOU MUST SHOW ALL YOUR WORK.




[ 1-4] 15, 5]
Consider the scattering of a particle from a three-dimensional “square well” potential,

f— V, lor r=<a
Viry=" . .
l\ lor r>a

(a) In the Born approximation, compute the differential cross section for an incident

plane wave.
(by Compute the total cross scction for arbitrary k.

[1-5] (10

A and B arc hermitian operators on the complex vector space V. The commutator of two
opcrators is definedas [A,B] =AB-BA.

Prove that
ITADIBD] = Y[(D,[AB]D)]

for any vector @ being an element of V, where ||...|| and (..., ...) denote the norm and the scalar
product in vector space V, respectively.

Hints:
e Express| (D, [ A, B]®)]|using Im ( AD, B ).
o [Im (3, ®@)<|(x. @)
* Schwartz’s Inequality: | (AD,BD) [<||AD ||| B ® .

(Explanations: Im=imaginary part, y is an clement of V)



[H-6]  |1,I,1,7]

A static magnetic ficld, (0,0, 8,) and a rotating magnetic ficld { B, coswt, B sin wt,0) are applied
to a particle with 4 spin. Both of the ficlds are uniform throughout space. The Hamiltonian of
the system is given by the following cquation:

. [ : I .
)= 1, +11(r) with H, = - ;-}/TIBUOi and H, (1) ;::—;yhB, (c;\, Cos@t + 0o sin n)z) ,

where v 15 the gyromagnetic ratio of the particle, and o,,0,,0. arc the operators for the x, v, =
components of the spin.

The general spin state of the system is given by |‘P(t)>:C'l (r)[l>e o +(-l(f)|2>e """ where
[l) and |2>ure the cigenstates of H, corresponding to the up and down spins, respectively.

v B v B L .
) = ~L;‘i and w, = /v . Assume B, >> B, and that the spin of the system was pointing down

atts 0.

(a) Write down the 2x2 matrix clements of (1)

(b) Find the differential equation for ¢, (¢) which determines its time evolutions.

(¢) Using first order perturbation theory, find the 0™ and the I'* order coetficients for
= d" v (1),

(d) Find the transition probability from down- to up-spin states at time 7.



[U-7] (64

(1) Dertve the Claosius-Clapeyron cquation for the cequilibrium of two phases of a substance.
Consider a liquid or solid phase i cquilibrium with its vapor.

(b) Using part (a) and the ideal gas law for the vapor phase, show that the vapor pressure
(oHows the cquation In(P) = .1 - B/(k,T), where kg is the Boltzmann constant and T is
temperature. Make reasonable assumptions as required. What is 57
Hint: The Clausius-Clapeyron cquation is an expression tor P/ dT . which is the slope of

the cquilibrium line between the two phases (cither liquid or solid phase n cquilibrium
with the vapor phase).

[ 11-8 ] [10]
The chemical potential of a single-component gas is given by

502

T, Py=—RTIn a—~T—~———
(P+h)

where u,b are material-specific positive constants.

Obtain the internal energy of the system w(T,v).



[ 11-9 | 17.2,1]

Consider o system of M Hocalized weakly interacting particles. cach with spin 2 and magnctic

moment gz, located inan external magnctic ficld /7. The energy of the system is
L=y —n )yl
where iz is the number ol spins aligned parallel to /7 and - is the number ol spms aligned
antiparallel to /1.
() Write an expression for the entropy, S(/2) | for this system.
(b) FFind the temperature of the system as a tunction of £.
(¢) Which is hotter- - a system with positive 7 or a system with a negative 77 State in
your answer what is your definition of hot vs. cold in terms of the laws of
thermodynamics.

Use Stirling’s approximation: In(sn!) = nln(n)—n  forlargen.

[ 1-10 | [10]

Consider a two-dimensional photon ¢as confined to an arca A = Lx L. What is the average
numbcr of photons in the system at temperature 72

Your answer must be expressed in terms of A, 7, and of course, the neeessary fundamental
constants.

To keep your expressions relatively compact, the following rclationship will come useful:
i

w v

J.)f lufx:l“(v)g“(v), where I'(v) is the gamma function and £(v) is the Rieman zeta
(3’ —_—
0

function. In particular, ['(2) =1!=1 and £(2) = %

(You must derive your answer. Guessing or hand-waving the answer, or pulling it out of your
memory, will yicld zero credit.)
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J . 3
Take time derivative offfe first equation, — divE = diy —X. = — 2.
ot~ ot \¢&, o

/ the displace =8 and does not salgfy the

continuity eguation.

~

o

~

(

H-3 [10] -Spin/angular momentum: Z :ZZ\"" 9
' N

2

§2=(8,+8,) =52 +52428, 5,

Eigen value equation therefore be written as

2
ﬁls,n) = /L§1 -Szls,n> =%(§2 —512 -—§2,2)|s,n> =é:—(s(s+1)—-;—(%+lj—l(l+lnls,@

2\2
2
:ég—(s(s+l)——2-)ls,n>
2 2
For triplet state (s=1), E = ih——(l(lﬂ)&g) = ih_
2 2 4

frow g

2 2
For singlet state(s=0), F = %(0 _3) __3An
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T=6

W[(a) 1, (b) 1, (c) 1, (d) 7] -Time-dependent perturbation:
(a) Asstime eigen states of O, are given by the up spin, |1> and down spin lZ) states, and

corresponding eigen values are F, = —% YhB, and E, =é—)/hBO.
(1=, (1)]2)= —%WBI (cos ax +isin cor) = —%)/hBlei‘“

(2|H, (1)) =~%;/h31 (cosar—isinar) = —%WBle’i"‘

1, (1) = (2], (0]} =0
(b) Substitute I‘P (t)> => ¢, (1) n)e_i% =¢ (1)|1) e_ié;’ﬁ +¢,(1)]2) eui%—’ into time-dependent

Schrodinger equation, ih-aa?"l—’(t)) = H(t),‘l-’(t)) where H (t)=H, +H, (2).

Substitute this expression into the Schrédinger equation, and multiplying (1]

&, &, b L
Eeir)e ™ +in ()e = ()1 H,[1)e ™ +c, (0) (1| H, (1)]2) e

>

. , 1 ,‘.‘L‘Zﬂ l i{Q+w)r
Cl(t)=;’;Cz(t)<1,Hl(t),2>e ’ :57']916(Q ", (1)

(c)
c',(t)zc'l(l)( )~—yB Qo) §0)(t)=_§yBlei(nm),
. (Q+w)
> (1)= 'J-z VB @ gy -——-}’hB ek g i;/hBl 31.n > teA(Q;w)
02 zh(Q+a)) 2 ih(Q+ w)

initially up spin state is not populated, ¢ ) =0,

(d) The transition probability from down to up spin state at t is given by
, (Q+ w)

},Zh B2 Sm
4 hZ(Q+a))

P (1) =]e® (1) =




-7/

'f?u({p(‘,i‘,u-v\«: I‘ 7‘

) We know that, at equilibrivin, the chemical potentials of two phages
shonld be equal:

1 [P(1), 7] = iy [P(r), r 1)
Here we write £ = P(t) to cmphasize the fact thag the pressure depends
on the temperature. By taking the derivative of '} with respect to
temperature, we obtain
TR 2&) e 3’_3) +(1f_z) i )
ar ) p oP J_dr dr J p aP ) _dr
Taking into account that (O1/07)p = —3 and (O1/0P), = v, where 4 and
v are the entropy and volume per particle, and substituting into 2),

we have
dpP d — 99

(—l; h " - (]
where subscripts 1 and 2 refer to the two phases. On the other hand,
1 = T(32 = 91), where q is the latent heat per particle, 50 we can rewrite

.3) in the form

"3)

dP q .
(F h TAv 4)

which is the C]:msius~Chpeyron equation,

b) Consider the particular case of equilibrium between liquid and vapor.
The volume v, of the liquid is usually much smaller than that for the vapor

V2, 80 we can disregard v, in - 1) and write
dp, q
dr ~ TU,

Using the ideal gas law for vapor, v, = r/P,, we get

dP, 4P,
U T %)
or
InP, =4 - 72_ 3)
We can see that B = g. Rewriting *6) in usual units gives
lan=A—-——q-—=A— (]NA :A—L

kT kpN,T RT

where L is the latent heat per mole, N4 is Avogadro’s number, and R is
the gas constant.,



-8 [10]
The chemical potential of a single-component gas is given by
TSIZ
T.PYy=-RTIn| a ,
#(T', Py ( e b)J

where a,b are material-specific positive constants.

Obtain the internal energy of the system w(T,v) .
9 (T?) - p (T P)

v ’@%)p = "P'R'“““Z =2 (P+é)4/*: R7T™
' ’ gt of 2k

D= U-T 5 + Py
,o«/l“'e S.—.-—--&

T /e
= K e aﬁ) 5
(?4—6 +ZR

.I'Il
U =--RT J&(
P+b) MRT&( i’l—é) +..,R7”\(pr-@w/

=

M'Q*T}-Pv /

_ 2 RT L b
,32/?
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I-10 [10]

Consider a two-dimensional photon gas confined to an area A. What is the average
number of photons in the system at temperature 7 ? ‘

Your answer must be ex
fundamental constants.

pressed in terms of A, T, and of course, the necessary

To keep your expressions relatively compact, the following relationship will come useful:

RS

I‘é‘“‘l‘dx =L (W){(v), where T'(V) is the gamma function and ¢'(v) is the Rieman zeta
e -y

0

- : 7’ T 7
function. In particular, {(2)—-6—~. k - 7 [Mn"';; )

-1,2,3,. ..
MKJ—("

) /
c 1 T C T7 >
D22 s T ——-—\{k £ s = [-),‘w%u - £ .
Coan N TE T A7 LN T 5T
%Y

M rosle . dS 7/»7‘4? Ligy M v V(@)
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