Name:

Physics PhD Qualifying Examination
Part I - Wednesday, August 26, 2009

(please print)

Identification Number:

STUDENT: Designate the problem numbers that you are handing in for grading in the
appropriate left hand boxes below. Initial the right hand box.

PROCTOR: Check off the right hand boxes corresponding to the problems received from
each student. Initial in the right hand box.

1

3 Student’s initials

3

4 }

5 # problems handed in:
6

; Proctor’s initials

9

10

INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE

COLLATED AND GRADED BY THE ID NUMBER ABOVE.
Use at least one separate preprinted answer sheet for each problem. Write on only one
side of each answer sheet.

. Write your identification number listed above, in the appropriate box on each preprinted

answer sheet.

Write the problem number in the appropriate box of each preprinted answer sheet. If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 of 3).

Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all eight problems that you are handing in.

Hand in a total of eight problems. A passing distribution will normally include at least
three passed problems from problems 1-5 (Mechanics) and three problems from problems
6-10 (Electricity and Magnetism). DO NOT HAND IN MORE THAN EIGHT
PROBLEMS.

YOU MUST SHOW ALL YOUR WORK.



[I-1] [10]

A uniform rope of mass M and length L is pivoted at one end and whirls with uniform angular
velocity @. What is the tension in the rope at distance » from the pivot? Neglect gravity.

[I-2] [10]

Two thin beams of mass m and length / are connected by a frictionless hinge and thread. The
system rests on a smooth surface in the way shown in figure below. At ¢ = Othe thread is cut. In
the following you may neglect the thread and the mass of the hinge.
(a) Find the speed of the hinge when it hits the floor.
(b) Find the time it takes for the hinge to hit the floor, expressing this in terms of a concrete
integral which you need not evaluate explicitly.




[ I-3 ] [233,392]

Two equal masses are connected vertically with two identical massless springs with spring
constant of k and the first spring is hanging from rigid ceiling as shown in the figure. Horizontal
broken lines indicate the equilibrium positions of the two masses when they are hanging from the
ceiling. x;, and x; are displacement vectors of two masses from their equilibrium positions. The
displacements of the masses can be considered as one dimensional motion in the vertical
direction. The springs follow Hooke’s law. Two masses are under the influence of gravity.

NN N\ N\ \ \ \ (a) Write down the equations of motion for two

masses.

(b) Calculate the eigenfrequencies of normal modes.

k (c) Calculate normalized eigenvectors for each of
normal modes.

m - l- (d) If the whole system is lying on the frictionless

X1 horizontal surface and the effect of the gravity
along the direction of the motion of the masses
can be ignored instead of hanging from the

- ceiling, what would be the difference of the

X:2 motions of two masses and what would be the
difference in the eigenfrequencies of the system.

[1-4] [10]

Find the horizontal deflection from the plumb line caused by the Coriolis force acting on a
particle falling freely in the Earth’s gravitational field from a height 4 above the Earth’s surface.
Assume the experiment is conducted in Troy, which has an angle A relative to the equatorial
plane. (I.e., on the equator A =0, whereas at the North Pole A =7/2 )

[I-5]  [10]

A qualitative difference between classical mechanics and relativity is the existence of the
transverse Doppler effect in relativity (when light propagates perpendicular to its source in the
observer’s frame). Calculate the frequency of the photon @' in the observer’s frame in terms of

its frequency @ in the rest frame.



[I-6]  [10]

Calculate the potential at any point for a case in which a dielectric sphere of radius a is placed in
a uniform field E, . The dielectric constant outside the sphere is ¢, , the dielectric constant inside

the sphere is &,.

[-71  12,3,3,2]

(a) Write down Maxwell’s equations for free space when there are no current nor charge
distributions.
(b) Derive wave equations from Maxwell’s equation.

Use following relation if necessary.V-(AxB)=B-(VxA)-A-(VxB)
(c) Assume the form of plane wave solution,
E(r,t)=E,cos(k-r-at+¢)
B(r,t)=B,cos(k-r—ot+¢)
Where E,,B, are constant in both time and space, k,r are wave vector and position

vector, @1s angular speed, ¢ is initial phase.
Show that E, B,k are perpendicular to each other so that these vectors form right handed
coordinate system.

(d) The magnitude of the pointing vector, S =—1—-E><H , represents the intensity of
Hy

electromagnetic wave. However for light, it is common to use cycle averaged intensity,

I= ‘5 ] where bar above S indicates cycle average (average over a period of oscillation).

Calculate I = |§ ' for the case of plane wave in vacuum.



[1-8]  [10]

A closed loop carries a current i. The loop consists of two radial straight wires and two
concentric circular arcs of radii R, and R,. (R, <R,) The angle is 3 =7/4. What are the
magnitude and direction of the net magnetic field at the center of the curvature, point P?




[1-9] 13,71

(a) Two tiny metal spheres separated by a distance s and connected by a fine wire as shown in
the figure below. At time ¢ the charge on the upper sphere is ¢(¢), and the charge on the lower

sphere is —g(#). Suppose further that we can drive the charge back and forth through the wire,
from one end to other, at frequency w:

4(t) = g, cos(ar).
The system is a simple model of an oscillating electric dipole: p(z) = p, cos(awt) z, where
P, =4S -
In the far-field approximation » >> s, calculate the vector potential of this dipole system and
express the vector potential in terms of p(z).

(b) An electric dipole, p, oscillates with a frequency @ and amplitude p,. It is placed at a

distant +a/2 from an infinite perfectly conducting plane and the dipole is parallel to the plane
as shown in the figure below.
Find the time-averaged Poynting vector for distance » >> a.

Hint: there is an imaging dipole, p’, formed by the conducting plane.)
Note: for approximation: r; = r — (a/2)sin($) cos(@) ; r, = r+(a/2)sin(F)cos(p);
1/r =1/r, =1/r ; also neglect higher order terms of 1/r when you calculate the field.

A r
2

/ ,

(a) z /] 5 n
I/é »
q(t, d " Z ip >
S > X P a/'2 2 a'/2

-q(tH

/




[I-10]  [10]

Prove that the electric field E and the magnetic induction B of a point charge g with velocity
v =vx are given by:

_ yqR g x E

4re,(y* R+ R+ R} e

where
1

R=(x-vt)x+yy+zz and y=———,
1-v?/c?
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[Answer to the Normal mode problem]
(a)
mi, =—kx, ~k[x, —x,] (1)

mi, = —k ‘xl ~x|] (2)

(b)

Assume the solution in the form of x, = Asin(wr) and x, = Bsin(ar), and

substitute into (1) and (2). These assumed solutions satisfy the rigid boundary
condition at ceiling.

From (1), m¥, = —kx, —k|[x, - x, |

~@'mAsin(ar ) =—kAsin(@r)—k|A—B| Asin(ar)
~@'mA = ~kA - k[A- B|

~a@'mA+2kA-kB =0 (3)

From (2), m¥, =—k[x, - x|
~w'mBsin(ar)=-k|B- Alsinax
~w'mB=—k[B-A|
—kA+(~’'m+k)B =0 (4)

These two equations will have the solution if the following determinant is zero.
—w'm+2k ~k

k o’ =0
- ~-'m+k

—)(-(z)2m+2k)(—a)lm+!c)—k2 =0
S>Smie' -3Imkae’ +k* =0

3mk i\/9mzk2 —4m® (kz) _ Imk N5k’ (3i\/§)k

; 2 2
2in 2m 2m

(3+V5)«

2m

S0 =

Eigen frequencies: w=



(c) Eigen vector:

(3+5)

For higher frequency mode with @ = S
2m

, substitute this into (4)

~kA+(~'m+k)B =0

(3+5)
~kA +(— m+k)B=0
2m
PUEATEI
2
~>Normalization condition=>
A*+ B :Bl+(—l+;/§)33
:(l+3+\/§)B2 =
> )5’:»———l
\/4+«f5—
.9
(_1+I . 1+f 1 1+4/5
\/4+\/_ 2\/4+\/§
) L[
Eigen vectors: [ jz———— 2
445 1
(3-5)k
Similarly, for the lower frequency mode with w= ——2——
n

~kA+(—@'m+k)B=0

(3-5)k

—kA +(— m+k)B=0

2m
A= (——-[——)B

=» Normalization condition:

1-+/5 .

A’ +B‘_(———~) B + B’

:(4—\/3)3-:



>p=—1

45
=» Eigen vector:

(d) The effect of the gravity only changes the equilibrium position of masses, and the
spring follows Hooke’s law. There will be no difference in the eigen value and eigen
vector.



/-
The acceleration of the particle in the rotating coordinate system fixed

Solution 1.4
on the Earth is
a,

The acceleration due to gravity g ts along the phunb line. We choose the z-axis

g — 2w X v,
parallel but opposite to g. Let’s also pick & to be South and g to be East. Troy is in

o W sin A

the Northern Hemisphere, so
W, =

Wp = —WCOS A, wy, =0,

Next, working to leading order in the components of the velocity (in other words,

v &~ —0z when computing the Coriolis force), we have

x v z
w X v, =det | —weosA 0 wsin A | = —wglcos A g
0 0 —gl

Then the acceleration components are
(ar): =g

(a,}, = 2wyl cos A.

(a‘l‘)vl' - “»

Integration gives us the motion:
1 .
< = h, — :*gtz

2

1 ‘
y = —wgt®cos A,

Solving the second equation for the time to fall height h, so that = = 0, we immediately

find the deflection d in the y direction:
1 —
= gweos AV 8h3/y

d =

(3}
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(1)

divE =0 (@)
divB =0 (b)
VXE = —--a—]i

ot (c)

JE

VxB = —
X ;1'1()8() 8t (d)

in Sl unit

(2) Using the second equation:

Vx(VxE)=-9VxB
‘ ot
> V(V'E)—VZE:_&)VXB:—ﬂng()‘a‘:l}‘
ot or”
2> VE= M€y %:"E (e)

Similarly From 4™ equation,
VX(VXB) = V(VXB)—VZB = U,E, ‘a*va—jE’ =€y (_%}'j

: OB
> VB = 6,5

(3) Substitute (e) and (f) into (a) (b) (c) (d),

divE=k-E=0
divB=k-B=0

VxE:—aa—B 2> kxE=wB
t

a—E—)ka:—ﬁ,E
ot c”

VxB=ye¢,
K'and E, k and B are perpendicular, and B is in the place formed by k and E.

B is perpendicular to both of k and E. Cross product of k and E is in the direction of B
vector. The relative direction of E, B, k form right hand system.



|
(4) Poyinting vector in Sl unit is [§| = —

0
And ILI[El—l =\ H, / &

ExH|=|E||H|sin 0 = |E||H] since £, L 11,

>|s|= L B =5

Ju, /¢, 2

Time average of ‘E|2 is given by

G

| = ,lrﬂEf dr = rjE(f cos” (kr — @t + g)dt
r 0 [ 0

2y A
— ]E0| [ I vnol Vs _ (Eu
= || =+ cos(2kr =2ax +2¢) |dr =——
T 2 2

()
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Solution L1.10 I the fraune of the charge, it is at rest. Let’s temporarily eall that

the ywmprimed frame and the lab frame the primed frame. Then:

E qr

Jare ()7‘2 '

B -0 (1)
Now just boost to the lab frame. The transformations are:
h By, E| =+E+VxB),

o
Bh E B“, Bl = "/(B - ;EV X E)J»

Because of B = 0, these reduce to

i

B B E
and after taking into account. V- Ey = 0 we can simplify the magnetic induction to
H;—%VXEL:~%VXE;:—%VXE
If the particle 1s moving with velocity v == o0& then the lab frame is moving with

opposite velocity Vo= —v relative to the proper frame of the particle.  Also the

distance from the origin in the rest frame of the particle is

But it sees the lab frame moving in the —& direction, so in this relativistic problem

o= —uvtYy =R, y=y =R

u?

y= =R

For instance, the origin ' = 0 of the lab frame is moving with speed v “to the left,”
and time is dilated ¢ = «¢/. This means that the distance r appearing in (1) is, in lab

frame coordinates

roe R — o) 4y 2= R . R’:,“; + R
The unit vector appearing in (1) is just

NRLE 4R G+ RL2

7= (0@ + gy + 22)/r = : - :
. VR R R



Substituting these results into the above,

y RO Ry
LR AR R

HI,,U ///V!/) o A7//{/!l(l

N o N R AT
R~ 1)) I g

10 i N .

and

B hl M M
Ihis proves what was to be shown, once we drop the primes.

Ot



Physics PhD Qualifying Examination
Part I1 — Friday, August 28, 2009

Name:

(please print)
Identification Number:

STUDENT: insert a check mark in the left boxes to designate the problem numbers that
you are handing in for grading.

PROCTOR: check off the right hand boxes corresponding to the problems received from
each student. Initial in the right hand box.

; Student’s initials

3

;’ # problems handed in:
6

; Proctor’s initials

9

10

INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

1. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE
COLLATED AND GRADED BY THE ID NUMBER ABOVE.

2. Use at least one separate preprinted answer sheet for each problem. Write on only one
side of each answer sheet.

3. Write your identification number listed above, in the appropriate box on the preprinted
sheets.

4. Write the problem number in the appropriate box of each preprinted answer sheet. If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 of 3).

5. Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all eight problems that you are handing in.

6. Hand in a total of eight problems. A passing distribution will normally include at least
four passed problems from problems 1-6 (Quantum Physics) and two problems from
problems 7-10 (Thermodynamics and Statistical Mechanics). DO NOT HAND IN
MORE THAN EIGHT PROBLEMS.

7. YOU MUST SHOW ALL YOUR WORK.




[TI-1]  [10]

Compute the leading order relativistic correction to the ground state energy of the simple, one-
dimensional harmonic oscillator. (Recall the relativistic energy-momentum relationship,

E = p’ct +m’c*)

[ 1I-2] [5,3]

One dimensional harmonic oscillator is under weak electric field, and the interaction between the
electric field and the oscillator is given by the electric dipole interaction Hamiltonian [Eq.(2)].
Find the energy difference of the oscillator when electric field is turned on. The Hamiltonian of
the oscillator is given by H = H,+ H', where

=2 2-2

H=2 %%  and 1)
2m 2

H'=-i-E . 2

Here 1 =gx, and q is charge associated with the oscillator.
The eigenvalues of the Hamiltonian without the electric field are given by

E, =(n+%jha) where n=1,2,3,...

Use the following equation if necessary:
nh

<nlx|n—l>=<n—1|x|n>= S

(a) Assume H,>>H', and calculate the lowest order non-vanishing correction to the

unperturbed energy.

(b) Draw a sketch of total potential energy when electric field is on and off.



[ II-3 ] [572,2’1]

Consider an electron spin and an arbitrary unit vector € = (sin dcos @,sin 3sin@,cos$) in the

three-dimensional space, specified by the polar (9) and the azimuth (¢) angles. In the usual ;-
representation the electron spin operator can be expressed in terms of the Pauli matrices

- h_ -
S=-§O', O’=(O’x,0'y,0'z),

0 1 0 —i 1 0
o, = , O, = , O, = .
* 1 0 Y i 0 0 -1

(a) Determine the properly normalized eigenvectors and eigenvalues (in terms of 4 and @)

of the following operator:
é

o,=€-0.
(e -0 is the scalar product of the vectors € and & . In units of %/2, this is the operator for
the spin projected along the direction € .)

Now assume that we measure S, , and itis A/2.

(b) What is the probability that the component of the spin along the direction éis +7#/2?
(c) What is the probability that the component of the spin along the direction € is —#/2?
(d) What is the expectation value of the spin along the direction € ?

[ 11-4] [10]

—-ar

(a) Consider a potential of the form V' (r)=V, c .
¥

(1) Calculate the differential scattering cross section using Born approximation.
(i1) Calculate the total scattering cross section.

(b) Using the results of (a), calculate (i) the differential and (ii) the total scattering cross section
Z,Z,e*

of Coulomb potential V. (r) =



[ 1I-5 ] [292’2’2,2]

Consider the wavefunction (r)= Ne ' that describes a particle in three dimensions.

(a) Find N such that | () |* is a probability density.

(b) Determine the expectation values of the moments of the radial position , (") for
n=1, 2, as well as its variance.

(¢) Determine the expectation values of the moments of the momentum , (p’') for n=1, 2,
as well as its variance.

(d) Determine (Ap,)(Ar) . Does it satisfy the uncertainty principle?

(¢) Estimate the kinetic energy of the particle, assuming m is the mass of an electron and a,

is the Bohr radius. Assuming that the particle described by the wave function is an
electron in a Hydrogen atom, estimate the potential energy from the kinetic energy and
then calculate the total energy. How does it compare to the ground state of a Hydrogen
atom?

[1I-6]  [433]

A hydrogen atom in its ground state is placed between the parallel plates of a capacitor. For
times ¢ < 0, no voltage is applied. Starting at ¢ =0, an electric field E(t) = E,ze™"'" is applied,
where 7 is a constant.

(a) Derive the equation for the probability that the electron ends up in a state j due to this
perturbation.

(b) Evaluate the result if the state j is:
(i) a 28 state;
(ii) a 2P state.

The following expressions may prove useful:
The wavefunction of the 2P state with m=0 is given by:

1 -r/2a
Wsio(Fs 3, @) =—=¢¢"""“rcos(:F) 1 om0 -
210 /——*32 f, (I=1,m=0);

The wavefunction of the 18 state (ground state) is:
1 -r/a

¥/1m)(7349399) = 3 e (F0,m=0),
a

o

with a,being the Bohr radius of the hydrogen atom.
4



[II-7]  [5,5]

When a particular one component material is in phase « , it obeys an equation of state,
PP=a+bpu,
where f# =1/T and a and b are positive functions of #. Here, P and u are the pressure and

chemical potential, respectively.
When this material is in phase y,

BP=c+d(fu)y
where ¢ and d are positive functionsof f,d >b,and c<a.

(a) Determine the density change that occurs when the material suffers a phase
transformation from phase « to phase y.

(b) What is the pressure at which the transition occurs?

Hint: The Gibbs-Duhem equation, which you may want to use, has the form:
0=8dT -VdP+ ) ndpy, ,
=1
with §, T, V, and P being the entropy, temperature, volume, and pressure, respectively, while g,
and n, are the chemical potential and number of moles of a species i , respectively.

[1I-8]  [10]

Consider the following gas:

(P+—a—j(v——b)=RT,

v

where P is the pressure, v is the specific volume, T is the absolute temperature, and a and b are
positive material-specific constants. No other information/equations are given about this system, i.e., you
can only use the above system-specific information. (Please look carefully; this is not the equation of state
of the Van der Waals gas)

Determine the volume dependence of the constant-volume specific heat c¢,(T,v), and write down the

most general form of the specific heat of this system, governed and constrained by the laws and
mathematical framework of thermodynamics.



[11-9] 13,3,4]

The probability of a particle being in a state “s” of energy E| in a canonical ensemble is given
by
~E, | kgT o B/ kaT

e
F = CE kT
ST

where Z =) e™*'%T is the partition function. Also, F' =—k,TIn(Z) is the Helmoltz free

energy.

(a) Show that the entropy of the system may be expressed as

S =—ky Y P, In(P,).

Using this expression for the entropy, imagine that a system A; has a probability P" of being in
a state “¢” and a system A, has a probability P of being in a state “s” . Then one can define
the entropies S, and S, like above. Each state of system A consisting of A; and A, can then be
labeled by “#” and “s”. Let the probability of A being found in this state is denoted by P,_, and

its entropy is defined by
S = _kB er Prs ln(Prs) .

(b) If A, and A; are weakly interacting (i.c., their states are essentially independent of each
other), then show that the entropy is simply additive, i.e., =S, +5,.

(c)If A; and A; are NOT weakly interacting (i.e., their states are correlated), then show that the
entropy of the system satisfies S < §, +5,.

Hints: Notice that P = Zs P, and P? = Zr P_ . Use an appropriate inequality for In(x) to
simplify the expression for the total entropy.



[I-10]  [10]

A neutrino is an approximately massless particle that travels at the speed of light like a photon,
but it has spin 1/2 instead of spin 1. If the neutrinos do not interact with each other (x = 0), what

would be the expression for the distribution of energies du/de (u=U/V ) in a neutrino gas in
an appropriate oven? Assume that the median energy &, . is much greater than the neutrino

mass, so that the mass can be neglected.
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Thus we want to compute
Al = ———(0p']0
S 52< IP710)
Now note that
Viwl

,,,,,, 7

It is o simple algebraic exercise to show that
(Ofa —a™)'|0) = 3

Thus o
Al = _ 3 ()

32 2

=1
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[Answer to time independent perturbation problem]

Since H, >> I1', the interaction with the electric filed can be treated as perturbation to the

system.
The energy of the harmonic oscillator without the electric field is given by

"

;
Hy! =Ey" and E, (n+;)h(u where n=1,2,3,...

For the first order, energy shift is given by the following equation.
o < “”'H ‘(p“”> < w)' (p(“)>

Second order:

I (0) (pm) ‘ ‘ <0) (0> '
EEDY I lL] > AL i
f 4)) E 0 m 0)
' k#n E( ( ’ kin E( E(
) (0) (0) (0)
3 [~ 2 <¢/H I ‘ ‘q)n >' ,< n -1 ’ ‘wn >'
= (‘[ * () [£0)) ~((}) ‘(())
E/ [ ‘il [L” [ -4
\/(n +1)h nh
, 2maa 2mew
2 ~| <
=q°|E] +
—hw hw
- 2
: (g (n+1)h  ph q'|E|
= q“ s -+ e ———
2mar 2ma’ 2mw’
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Solution I1.10

, 47(1)2(]]) (o)) y e
/ NDiract€(P)) = vV _ __
Pt (/I(,’)"(l + (3‘/’»31)

dN = 1}

where v is the number of polarizations. Actually. for neutrinos we only have one
polarization (left-handed), v = 1. It antineutrinos (vight-handed) are also produced

in this oven we get. instead v = 2. In either case,

d(UV/V)  du cd(NJV) dretde
T DT e o — = 1/ T T
de de de (he)* (1 + ec/ksT)

Y



