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Physics PhD Qualifying Examination
Part I - Wednesday, August 20, 2008

Name:

(plcase print)
Identification Number: _
STUDENT: Designate the problem numbers that you are handing in for grading in the
appropriate left hand boxes below. Initial the right hand box.
PROCTOR: Check off the right hand boxes corresponding to the problems received from
each student. Initial in the right hand box.

|

5 Student’s initials

3

4 ‘ :

5 # problems handed in:
6

; Proctor’s initials

9

10

INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

I. DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE
COLLATED AND GRADED BY THE ID NUMBER ABOVE.

2. Usc at Icast one scparate preprinted answer sheet for cach problem. Write on only one
side of cach answer sheet. ’

3. Write your identification number listed above, in the appropriate box on cach preprinted
answer sheet.

4. Write the problem number in the appropriate box of each preprinted answer sheet. If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page 1 of 3).

5. Staplc together all the pages pertaining to a given problem. Use a paper clip to group
together all eight problems that you are handing in.

6. Hand in a total of eight problems. A passing distribution will normally include at lcast
three passed problems from problems 1-5 (Mechanics) and three problems from problems
6-10 (Electricity and Magnetism). DO NOT HAND IN MORE THAN EIGHT
PROBLEMS.

7. YOU MUST SHOW ALL YOUR WORK.




[ I-1] {10]

A particle slides frecly and without friction on the top surface of a spherically-shaped object with
radius R . The mass of the particle is m and the magnitude of the gravitational acccleration is g .
The particle is initially at the top of the sphere with infinitesimally small velocity. Determine the
angle @ at which the particle “takes off”, i.c., the angle at which the particle scparatcs from the
surface of the sphere. See illustration below.

(2] [10]

A plane pendulum consists of a mass m suspended by a massless spring with unextended length
b and spring constant k. Find Lagrange’s cquations of motion.

[R]



| 1-3 ] |10}

Two masses m, and m, (m, =m, = M) are connected to each other by a spring with spring
constant £, and to fixed points at the two cnds by springs with spring constant x, as shown
below.

(1) Writc down the one-dimensional cquations of motion for my and m,.

(2) Assuming that thc motion of the masses is oscillatory (Le., x,(¢) = B, j=12)
simplify the equations of motion; solve this pair of simultaneous equations; and derive
the characteristic frequencies (or normal frequencics) for the system.

(3) Given the schematic shown below, associate the appropriate normal modes to the derived
characteristic frequencies. Explain your answer (e.g. in terms of either “phase”-argument
or “energy”-argument.)
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[4]  [10]

Two masses m; and m, arc initially scparated by a distance r, and are released from rest,
Assume that the only force acting between the two masses is the gravitational force.

Calculate the speed v, and v, of the two masses as a function of the instantancous separation r,
the initial scparation #,, m,, m., and G (gravitational force constant).

| 1-5] [10]

An atom in its ground state has mass m. It is initially at rest, in an excited state of excitation
cnergy Ag. It then makes a transition to the ground state by cmitting one photon. Find the
frequency of the photon, taking into account the relativistic recoil of the atom. Express your
answer also in terms of the mass M of the excited atom.

l I-6 l l37332’2]

Two spherical cavitics of radii @ and b are hollowed out from the interior of a (neutral)
conducting sphere of radius R. At the center of cach cavity a point charge is placed - call these
charges g, and gy, (see illustration below).

(a) Find the surface charges o, o} and ox.

[0 is the surface charge on the surface of cavity a, oy, is the surface charge on the surface of
cavity b, and oris the surface charge on the conducting sphere. ]

(b) What is the clectric ficld outside the conducting sphere?

(c) What is the clectric field inside cach cavity?

(d) What is the force on ¢, and g?




[ 1-7] [10]

(1) Write down
(1) the expression for the clectric ficld £ in terms of the scalar potential V' and the vector
potential 4 ;
(it) the relation between the magnetic ficld B and the vector potential 4 .

(2) Given the scalar potential ¥ =0 and vector potential 4 below,

'/ (24 A 2 " -
(- ‘Elh—(,c‘f—l.ﬂ)hz for |xl<ct
1= de¢

0 for |x[>ect

find £ and B .

(3) Write down
(1) the expression that relates the discontinuity in the clectric displacement vector D to the
free surface charge density o, at the x =0 interface.
(1) the cxpression that relates the discontinuity in magnetic ficld B to the free surface current
density K, at the x = 0 interface.
(4) Find the free surface charge and frec current density due to the potentials given in (2).
(Assume that the diclectric constants and permeabilitics on both sides of interface are e, and u
respectively),



[1-8] {10]

(a) Find the magnetic field at a distance = above the center of a circular loop of radius r, which
carries a steady current /, as shown below.

(b) A spherical shell of radius R, carrying a uniform surface charge o, is set spinning at an
angular velocity @, as shown below. Find the magnetic field at center P of this spherical shell.

(€))




I 1-9 ] l3’413]

Charges +¢ and —q a distance  apart orbit around cach other in the x-y plane (z = 0), as shown
below. at a frequency @ (d << ¢/ w).

+q \
d

-q

(a) The emitted radiation is primarily contined to one multipole. Which onc?
(b) What is the angular distribution of the radiated power?
(¢) What is the total power radiated?

[1-10 ] [10]

The Lorentz transformation of the clectromagnetic fields can be written
E‘; = E"t ? Bw; = B\I

E,=y(E, +v<B), B =yB —-

Py

vxE ),
Where

instance, £, = E ~E . Asusual, y =(1-v'/c”)"" % where v =/ v | is the speed.

indicates the component parallel to the velocity v and L the perpendicular part. For

(a) Show that the quantities £- B and E* —¢” B* are Lorentz invariants.
(b) Evaluate those quantities for a plane wave in vacuum..
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Suggested Solutions

Part I Mechanics
I-4 Gravity or other Central Potential

ey

r=le, - x|

When two particles are initially at rest separated by a distance r,, the system has the
total energy

E,=-GgTh™M

To
The coordinates of the particles, x, and x,, are measured from the position of the center
of mass. At any time the total energy is

E=lmzr+ Lz _gmm
2 2 r

and the linear momentum, at any time, is
p=mx, +myx,=0
From the conservation of energy we have E=E;, or

m 1 ., 1 mm
e Rlalicc == mx; +=myxl - G ——2
1 2 2 r

Using (3) in (4), we find

0

()

3)

(4)

()
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Electricity and Magnetism

I-6 Electrostatics or Boundary Value

(a)

(b) |E

g = —

9 .
4ma?’

Ty =

%
4xb?’

- 4o+
R= "qxm?

out

- 4meg

1 ‘h“'%i

r2

¥

where r = vector from center of large sphere.

where r, (r}) is the vector from center of cavity a (b).
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Sl o

Physics PhD Qualifying Examination
Part Il — Friday, August 27, 2008

Identification Number:

(plcase print)

STUDENT: insert a check mark in the left boxes to designate the problem numbers that
you are handing in for grading.

PROCTOR: check off the right hand boxes corresponding to the problems received from
cach student. Initial in the right hand box.

1

Student’s initials

# problems handed in:

Proctor’s initials

e B R e R RN R R g AU R IR SN RUTE § SO

<

INSTRUCTIONS FOR SUBMITTING ANSWER SHEETS

DO NOT PUT YOUR NAME ON ANY ANSWER SHEET. EXAMS WILL BE
COLLATED AND GRADED BY THE 1D NUMBER ABOVE.

Use at least one scparate preprinted answer shect for each problem. Write on only one
side of cach answer sheet.

Write your identification number listed above, in the appropriate box on the preprinted
sheets.

Write the problem number in the appropriate box of each preprinted answer sheet, If
you use more than one page for an answer, then number the answer sheets with both
problem number and page (e.g. Problem 9 — Page | of 3).

Staple together all the pages pertaining to a given problem. Use a paper clip to group
together all eight problems that you are handing in.

Hand in a total of eight problems. A passing distribution will normally include at least
four passed problems from problems 1-6 (Quantum Physics) and two problems from
problems 7-10 (Thermodynamics and Statistical Mechanics). DO NOT HAND IN
MORE THAN EIGHT PROBLEMS.

YOU MUST SHOW ALL YOUR WORK.




[H-1] (10

A particle is in a onc-dimensional potential well given by V(v) = —¢8(x). where 5(x) is the
Dirac delta function and ¢ > 0 is a constant.
Find the energy and the normalized wave-function of the hound state(s).

Hint: You must carcfully consider and study the possible discontinuity in the derivative of the
wave function y'(x) at x=0. You can do this by intcgrating Schrédinger’s cquation for the
above system from —¢ to +¢ and the let € — 0.

This is at the heart of this problem, and without a meaningful treatment and analysis of this
discontinuity you will nor pass this problem.

[ 12 ] 14,6}

Consider a particle of mass m in a onc-dimensional box with infinite high walls at x =0 and
x=L.

(a) Find the cigencnergies £, and normalized eigenfunctions ¢, for the particle in this box.
(b) Calculate the first order correction to E5'" for the particle due to the following perturbation:

H'=10"E >
L

2

3]



| 11-3] [10]
(a) Recall that the raising and lowering operators for the angular momentum are given by

L, =L +il, .

Express £ and L interms of L, , and use this to prove that for any state with definite angular

momentum quantum numbers ¢, m, the following expectation values vanish:
(Ly=(L,)=0.
(b) Prove the following identities:
AL =2L -2+ LL +L L, 4L =2L -L)-L L ~L1 .
(¢) Use the identities from (b) to computce the expectation values

(L, (L),

tor any state with definite angular momentum quantum numbers ¢, m .



[ 11-4] [7,3]

(a) Evaluate the differential scattering cross-scction in a repulsive potential, V()= A/ +7 in the
Born approximation.

(b) Compare your above quantum results for the differential scattering cross section with the
classical one, which is provided below for your convenience. Determine the limit of applicability
for both cross scctions (quantum and classical).

Classical Result [provided to you for part (b)]:
The differential scattering cross section for the classical mechanics case is given below; where
we give the connection between the scattering angle @ and the impact parameter o

P

Lvpdr
P N2UE VY= oop vy’

(T2 .

Here g is the zero of the expression under the square root sign. Also v and g are the incident
speed of the particle and the reduced mass, respectively.

For the classical treatment onc can determine the differential scattering cross section by
intcgrating the above cquation. The results arc:

s Ar-9)°
E3Qr - 3)

3 pa—
dU:—Zﬁpd—’Ode S 5 r-9 5
dg E 9 Q2r-9)



[1-5]  [10]

(a) Write down the uncertainty relation of space and momentum.
(b) Use this uncertainty relation to estimate the ground-state energy of a one-dimensional simple
harmonic oscillator with mass m and angular frequency @ .

| H-6] [10]

A onc dimensional simple harmonic oscillator of mass » and angular frequency @ 1s acted upon
by a spatially uniform but time-dependent force (NOT POTENTIAL)

Fr
F(f): ﬁ;h:— .
o\~ + 7"

At t=—cc the oscillator is known to be found in the ground state. Using time-dependent
perturbation theory to first order, calculate the probability that the oscillator is found in the first
cxcited statc at £ = w0,



[1-7] (10

The cquation of state of a hypothctical ferromagnctic material is given by the implicit cxpression
“Im+ B
m = tanh ~————J

>

where m = m(T B) is the dimensionless magnctization (order paramcter), B is the cxternal
magnctic ficld, 7 is the temperature, & is the Boltzmann constant, and J is a matcrial-specific
constant.
(a) What is the critical temperature T, below which the system cxhibits spontaneous
magncetization? (We refer to spontancous magnetization when m # 0 at B = 0 )
(b) Show that in the region just below T, the spontancous magnctization bchaves as

m(T,0) =~ const. | T~T |",

and determine the value of the critical exponent 4 .

[ 11-8 | [10]
Consider the Berthelot equation of state of a real gas:

RT a

P~

Vb TV

L}

where P is the pressure, T is the temperature, and ¥ is the volume. R is the gas constant and a, b
are empirical constants. The critical point of the Berthelot gas 1s characterized by critical
pressure Py, critical volume V, and critical temperature T..

Find P., 7. and V. in terms of R, a, and b.



[ H-9 ] [4,3,3]

Consider a system of N distinguishablc non-interacting spins in a magnctic ficld H. Each spin
has a magnetic moment of size 4, and cach can point cither parallel or antiparallel to the field.
Thus, the cnergy of a particular configuration is

N
Enlnz...nv — —Zni/uH N ’11 — —l—_l i
i1
wheren, u is the magnetic moment of spin i in the direction of the field.
(a) Determine the average internal encrgy of this system as a function of B(=1/kT). Hand
N by cmploying an cnsemble characterized by these variables.
(b) Dectermine the entropy of this system as a function of B, Hand V.

(¢) Determinc the behavior of the average internal energy and cntropy for this system as
7' —0.

{ H-10 ] [10]
Consider a hypothetical Fermi system with A particles in volume J and with the single-particle
density of states g(g) given by
{0 i e<0
gle) = / . ;
Ia Voif >0

where « is a constant,

Find the Fermi energy ¢r, the internal energy, and the pressure of the system af zero
temperature.
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