Fengyan Li

Fengyan Li

  • Ph.D in Applied Mathematics, Brown University, 2004
    B.S and M.S. in Computational Mathematics, Peking University, 1997 and 2000

  • Y. Cheng, C.-S. Chou, F. Li, Y. Xing, L2 stable discontinuous Galerkin methods for one-dimensional two-way wave equations, Mathematics of Computation, accepted, 2015
  • Z. Tao, F. Li, J. Qiu, High-order central Hermite WENO schemes for hyperbolic conservation laws, Journal of Computational Physics, v281 (2015), pp.148-176
  • T. Xiong, J. Jang, F. Li, J.-M. Qiu, High order asymptotic preserving nodal discontinuous Galerkin IMEX schemes for the BGK equation, Journal of Computational Physics, v284 (2015), pp.70-94
  • Y. Cheng, I. Gamba, F. Li, and P. Morrison, Discontinuous Galerkin methods for Vlasov-Maxwell equations, SIAM Journal on Numerical Analysis, v52-2 (2014), pp.1017-1049
  • Y. Cheng, F. Li, J. Qiu, and L. Xu, Positivity-preserving DG and central DG methods for ideal MHD equations, Journal of Computational Physics, v238 (2013), pp.255 – 280
  • F. Li and L. Xu, Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations, Journal of Computational Physics, v231 (2012), pp.2655-2675
  • S. C. Brenner, F. Li and L.-Y. Sung, A locally divergence-free nonconforming finite element method for the reduced time-harmonic Maxwell equations, Mathematics of Computation, v76 (2007), pp.573-595
  • B. Cockburn, F. Li and C.-W. Shu, Locally divergence-free discontinuous Galerkin methods for the Maxwell equations, Journal of Computational Physics, v194 (2004), pp.588-610